🧐10 年內營收破 300 億元!?
本篇的追蹤個股是葡萄王 ( 1707 ),
這是我第 4 次寫它,
第一次寫的時候價格是 193 元,
第二次寫的時候價格也是 193 元,
第三次寫的時候價格跌到 162 元,
雖然期間最高漲至 233 元,
但目前價格又跌回 170 元。
不少投資人肯定很困惑,這昔日的 保健食品之王 葡萄王 (1707) 到底怎麼了!?未來還有機會回到 200 元以上嗎?
---
📌 葡萄王 ( 1707 )
成立於 1971 年,主要從事保健品的生產、製造及銷售,其中 益生菌 與 菇菌類 市占率 分別為 31% 與 45%,皆佔據保健食品市場的第一,為國內知名的保健品廠商。
-
除此之外,公司也轉投資 60% 的「葡眾企業」、及持有 100% 的「上海葡眾」。其中葡眾為台灣第二大直銷公司,市佔約為 8.3%,僅次於外商安麗 ,更為 2018 年世界直銷排行第 49 名。
-
葡眾會員人數高達 22 萬人,營收高達 80 億,佔葡萄王 84% 的營收,主要是透過會員直銷作為產品主要銷售通。
-
而在中國的 上海葡萄王,起初設立目的為葡萄王,自有品牌之中國生產基地,但連續數十年不斷虧損,新管理階層改變營運策略,由 OEM/ODM 模式扭轉了多年虧損,於 2016 年開始,由虧轉盈。近年搭上益生菌市場需求成長的特快車,將致力於這方面的產品發展。
-
📌 與統一聯手開拓海外市場
2021 年 1 月中時,
葡萄王招開臨時股東會,
宣告 統一集團 將入股葡萄王 20 億,
以每股 170 元的價格,認購 1185 萬股,
此次私募,統一持股比率將達 8%,
成為葡萄王最大的外部股東。
-
對此葡萄王表示,
與統一合作對拓展海外市場有加分作用,
因為統一海外實體通路廣闊,
涵蓋超商、藥妝、百貨等
共有逾 9000 個據點,
未來可藉由統一的通路,
直接銷售葡萄王的產品。
-
舉例來說,
東南亞國家因語言、宗教、文化等不同,
通路開發較複雜,合作後,
未來有機會直接上架菲律賓的超商門市。
-
除此之外,
未來葡萄王想推出優格,
不用擴增產線,能請統一幫忙代工;
反之,統一也能成為上海葡萄王 ODM 客戶。
-
而今年 7 月時,
葡萄王進行了董監改選,
提名統一美麗事業董事長 高秀玲 為董事,
此舉也被視為正式將統一納入經營階層;
雙方正式開始合作海外事業。
Ex. 今年 6 月中,葡萄王有兩款機能飲「康普茶」和「多益飲」大量舖進統一超商通路,產品能見度大增。
-
📌免責聲明:
單純分享財報資訊與個人看法,無邀約之實,僅符合量化條件的個股,無推薦之意,僅供參考、任何交易行為須自行判斷
-
✅3 天文章試閱 : https://reurl.cc/GmY2mv
-
https://www.pressplay.cc/project/vippPage/%E8%91%A1%E8%90%84%E7%8E%8B1707%E5%96%8A%E8%A9%B1%E4%BB%8A%E5%B9%B4~/D899DE1D274807B971396739D6B3098C
三階通路舉例 在 台灣物聯網實驗室 IOT Labs Facebook 的最讚貼文
從火星探測系統到輔助工業製程,美國工業用 AI 新創 Beyond Limits 如何在台灣做到技術在地化應用?
李佳樺 2021/08/13
從2012 年美國太空總署成功將探測車「好奇號」送上火星至今,已經過了3000多個「火星日」,肩負著火星探測的重要任務,8年來好奇號傳回許多對火星的重要觀察與發現。背後更不為人知的,則是好奇號的 AI 運算系統,其實是由美國新創 Beyond Limits 的團隊建立的,公司發展至今也將觸角伸到能源、先進製造等產業,建立 SaaS 服務,為產業提供 AI 輔助平台,2020 年更獲得 1.3 億美元的投資,拓點到台灣、日本、新加坡、香港等地。
Beyond Limits 將 AI 應用到產業製程的契機,源自於當時跨國石油集團 BP 在墨西哥灣發生的漏油事件,企業希望導入 AI 優化決策過程,合作中也發現了石化能源產業的痛點,研發出石油配方建議系統、石油製程操作檢引系統等 SaaS 產品,不僅受到美國石油公司歡迎,日本市場也買單。
有了日本的先例,這套美國研發出的產品,照理說要拓展到亞洲市場應該不成問題,不料到了台灣卻窒礙難行,甚至需要重新開發不同的產品。
Beyond Limits 的台灣團隊究竟面臨了什麼挑戰?
台灣市場與美國差異大,Beyond Limits 台灣團隊必須如創業般從頭研發產品
台灣分公司總經理張中宜說明,台灣產業的先天特性,讓美國母公司已開發的產品都面臨市場可行性低落的問題,以石油產業的產品舉例,在台灣只有中油、台塑兩個客戶,且台灣的石油公司並不做研發工作,多半直接向國外公司購買配方,因此團隊必須在美國 SaaS 模式 的技術基礎下,研發出符合台灣市場、針對不同產業需求的商品。
「Beyond Limits 在台灣設立公司時的處境,跟重新創業差不多。」張中宜表示,AI 應用產品的開發不僅需要能夠從零開始寫演算法的工程師,也要有懂產業製程的專家團隊,龐大的研發費用與對產業專家的需求,讓每一次產品開發都像募資活動,團隊必須透過產業訪談做足市場研究找到痛點,說服製造公司與他們合作開發能解決產業問題的軟體。
然而開發全新市場對張中宜來說並不陌生。
她曾經在孟加拉創立幫助偏遠地區孩童課輔的非營利組織 e-Education ,第一年就讓偏鄉學子考上孟國最高學府卡達大學,更順勢搭上鼓勵企業與 NPO 合作的開放式創新風潮,讓卡西歐、 AI 新創、安永都找她擔任顧問,執行戰略布局或開發新通路的工作,面對 Beyond Limits 在台灣的難題,團隊選擇了電動車電池研發、面板機器手臂維修與人流異常預警系統等三個產業切入。
延伸既有美國產品技術,尋找合適的台灣在地產業切入開發產品
選擇電動車電池產業與 Beyond Limits 在美國石油產業的經驗有關,研發電池的過程與石油廠研發機油的邏輯相似,痛點都在於漫長的研發過程,就像做菜時要多次嘗試才會知道多少的鹽與油才是最佳的調配一樣,電池配方更要經歷至少半年的實驗,且實驗設計也要在無數次團隊與客戶的交鋒後才能成型,溝通成本相當高昂。
使用 Beyond Limits 導入認知 AI 架構的電池配方建議系統,研發人員只要以自然語言輸入期望的電池規格、價格與電車轉速,系統即可在 43 分鐘內提供數百種配方與實驗方式供選擇,縮短約 2 千倍的研發時間。
Beyond Limits 也在 7 月 29 日宣布與日本的三井物產公司進行策略結盟,以其認知 AI 的核心技術,協助三井投資的液化天然氣廠進行巨量資料分析,並整合作業人員專業知識與數位化作業模式,制定出精簡有效率的解決方案。日本三井整合數位策略部部長常務董事真野雄司氏說,透過與 Beyond Limits 的合作可以改善與再造營運流程,更有效率執行現有事業群的高附加價值項目。
另外,Beyond Limits基於公司在美國既有的輔助風電機維修平台,投入面板機器手臂維修建議系統的開發,「雖然也想在台灣用同一套產品幫助風電產業,也與風電廠陸續接洽,但台灣的風電仍在建設階段,缺乏營運經驗,目前的維修需求也不高。」張中宜談到,市場開發的大方向是要在台灣尋找具備預測維修需求,且市場密集、成熟的產業,公司在與投資人仁寶電腦的合作中,發現光電面板產線中機器手臂的維修概念與風機維修類似,而且痛點也類似:包含高昂的維修成本、未經標準化的維修流程,以及依賴經驗的維修決策。
目前輔助維修系統正與日本機器手臂原廠合作開發,由廠商提供維修資料與產業專家, Beyond Limits 透過 AI 分析維修數據,建立資料背後的邏輯推演,系統最終能判斷機器損壞的原因,並建議耗材種類與維修方式。從管理者的角度能降低維修、備料倉儲成本,對維修人員來說也有可依循的維修建議,長遠更能累積產業知識 ( domain know-how ) ,促進升級。
以邊緣運算技術,與北捷合作開發人流異常預警系統
而將技術從太空拉回到地面,Beyond Limits 也能在大眾運輸犯罪預警上有所發揮。他們與北捷合作,使用等同於在火星探測時、消弭與地球時差的邊緣運算技術,原理是透過分散式的運算提升效率,達成在監控系統的邊緣節點就進行異常人流的辨別,降低反應時間落差。
張中宜舉例,正常的人流像是乘客擠進車廂內的固定位置,開始滑手機,異常的人流可能是人群往四面八方散去,產生快速移動的樣態,異常訊息可以在 10 秒內將送到中控室,大幅縮減以往需要 4 分鐘以上的訊號傳輸時間,也能避免踩到人臉辨識的紅線,未來希望擴張應用到大樓監控,或是銷往他國的大眾運輸系統。
源自NASA,認知型AI成為技術優勢與門檻
與其他單純使用機器學習技術分類數據並預測結果的數值 AI 系統不同,Beyond Limits 的 AI 服務融合了數值 AI 與符號 AI ,前者的數值 AI 是透過大量數據讓模型認知「此為何物」,而符號 AI 則是藉由邏輯定義數值 AI 判斷的結果是好還是壞,並加以做出決策與判斷,以電池配方為例,將實驗室過去的實驗數據導入數值 AI 系統後,會得出樹種配方組合,再藉由符號 AI 判斷個配方辦法的優劣,並給予客戶回饋與建議。藉由結合數值 AI 與符號 AI 兩大系統的結合,讓人工智慧的每項建議都能以人類可理解的思路解釋,輔助人類做最後決策,也使人機協作的製程模式成為可能。
對於這項技術,張中宜表示這其實是源自於 NASA 將探測器「好奇號」送上火星後,由於火星與地球之間的數值傳遞有時間差,人類基本上不可能遙控好奇號,而且火星上的數據在這之前是 0,所以數值 AI 也無法運作,為了能夠讓好奇號自行在火星上探測與行動,勢必須要模擬人類大腦的認知型 AI 系統,當時才會開發出符號 AI。
根據研究報告,2025 年工業用 AI 規模將達 160 億美元,其應用開發仍具高度可能性,Beyond Limits 在台灣也希望更全面地研發產品打進該市場。除了正在培養市場的風電產業外,未來也希望協助優化晶圓半導體產業的製程,團隊更積極與社會、產業溝通,讓社會了解 AI 進入產業能讓人類更有餘力進行創意發想與決策,也讓產業正視轉型需求,近期將與台灣新創基地合作舉辦 AI 科普講座,持續促進製造業的人機共榮合作。
創業快問快答
Q:服務的創意來源,是因為發生甚麼事情而有這樣的想法?
A:台灣數位轉型瓶頸
Q:創業至今,做得最好的三件事為何?
A:用國際薪資招聘頂尖人才、台灣市場國際定位清楚、客戶分潤共創模式的商業模式
Q:要達到下一步目標,團隊目前缺乏的資源是?
A:能見度
附圖:BeyondLimits 台灣總經理 張中宜
Beyond Limits 以數值AI及符號AI兩大關鍵技術,達到人機互補智能
圖片來源 : Beyond Limits
擠捷運
圖片來源 : diGital Sennin on Unsplash
圖說:BeyondLimits Hybrid AI導入流程說明
BeyondLimits Hybrid AI導入流程說明
圖片來源 : BeyondLimits
資料來源:https://meet.bnext.com.tw/articles/view/47993?fbclid=IwAR2HbB5FrPIBoV9kDL27OnhNF-JDNzfYdsoLoVKn85yAA7GUjzDzI3y5Lw0
三階通路舉例 在 高虹安 Facebook 的精選貼文
七月的第一天,虹安在線上參加了第十屆工程、技術與STEM教育研討會,今年主辦單位是宜蘭大學資訊工程學系、協辦單位是成功大學工程科學系、IEEE台北分會 Young Professionals Group,研討會主題為「結合跨領域的工程教育」。虹安從資訊學碩士再到機械博士,現今又在立法院服務,橫跨了三個領域,當天的演講主題是「數據科學與國家治理」,由於疫情的關係,只能在線上跟各位老朋友、學界伙伴相見。
💡 科普時間:什麼是STEM教育?
✒ STEM,是四個英文字的第一個字母結合而成--科學(Science)、科技(Technology)、工程(Engineering)、數學(Mathematics)--是近年相關產業最喜歡用的關鍵字,歐美也有許多STEM教育的相關計畫,希望未來教育能從「知識傳遞」進化為「學以致用」,著重於科學、科技、工程、與數學的跨領域資訊整合,使知識成為可用資源的思維。
虹安首先以自身的學習、工作經歷作為開場,就讀資訊工程系所時的虹安,也跟你我的學生時期一樣,熬夜寫程式debug、拼命K書📚、做研究;到了機械博班的階段,要在博士班的過程一口氣弄懂機械系學生四年學到的內容,結合自身的資工背景,激發出insight 💡變成博士論文。過程中也曾經怨嘆過為什麼想不開,為什麼要跨領域讓自己這麼累;再到了科智的創業時期,獲得了 #全球創業賽第一名 的殊榮,跨領域的學習逐漸展現出成果;接著又到了鴻海集團擔任工業大數據辦公室主任貢獻所學,同時也擔任郭台銘創辦人的特助,命運的際遇讓我來到了立法院擔任第十屆立法委員。這次跨離了工程領域,虹安仍然戰戰兢兢,但過往累積的經驗與能量,使我能把立委的角色擔任好,虹安的大數據專長讓我問政時更能以事實和邏輯分析為根據,以數據避免政治口水,也為立院帶來了不同的科技思維。
#而且立院的同事跟科技業的很不一樣
接著,虹安以「數據思維的重要性」作為切入,說明了零售業龍頭Amazon建立了「線下」實體通路的用意是什麼、又如何決定什麼商品該在架上展示,現今的一切,不再用經驗法則決定,而是 #大數據驅動的結果,「妥善用數據分析就能看到別人看不到的價值」。在2011年,發源於辛辛那提的奇異(GE)公司,發表了GE Industrial Internet System,舉例說明了 Product (or Service) Data Life Cycle,強調了數據收集、數據比對與分析、決策改善等三個要素的Life cycle,這Life cycle適用於各領域的大數據分析和應用,重點是,以數據驅動需求的首要原則是:From gut feeling To data agility,將主觀意識下有限的數據來源,轉變到客觀心態下更大更完整的#開放式數據來源,如此一來,養成數據化的工作模式,就能得到洞察數據敏感力,看到別人看不到的價值。
而在 #國家治理方面,虹安舉了去年質詢陳時中部長的 #口罩地圖 為例,說明了大數據分析用於口罩分配的成果😷,並可解決城鄉口罩用量不同的物流輸送問題,使每個需要的人都可以買到口罩。各縣市的口罩分配不應該只是齊頭式平等;而我用的方式,就是上述的「數據收集、數據比對與分析、決策改善」三要素;虹安才能以明確的數據質詢蘇院長,7600萬片口罩到底去了哪裡。除此之外,虹安在立院密切關注的,還有 #數位發展部 的成立。數位發展部源自國家對於數位科技產業及發展的重視,成立數位發展部以進行國家數位發展政策之規劃、協調、推動與法規擬定及執行,並著重國家資通安全政策、法規、重大計畫與資源分配之擬定、指導及監督,這會是虹安在立院第四個會期的重要工作項目。
值得一提的是,會後教授們的提問十分精闢,虹安大致整理如下:
①女性工程師的教育環境、社會支持的情況
②科研成果的產出,凝聚成政策推動的的能量,再從政策回到高等教育的增進,形成正向循環的方式
③數位發展部的角色對於高等教育的影響,是否與科技部/國科會有所不同
很謝謝學界朋友的交流,這次的演講讓我暫離政治圈回到本業,虹安將會從這些面向進行研議與推動,希望我的分享也能給予學界跨領域的交流與互動。
#回歸自己的本業既熟悉又開心
#跨領域最難的是要花很多時間讀書
#想了解虹安的歷程可看面試郭台銘