【專欄】高中微積分和大學微積分的 6 個差別‼
各位晚安
今天來寫一篇很久之前就想寫的文章
只是一直遲遲沒有動筆
「高中微積分和大學微積分有什麼差別?」
這個主題一定有其他老師寫過
但一樣地
我從來都不會因為別人做過了自己就不做
因為每個老師的歷練不同
所以講出來的就算有些地方是一樣的
但還是多多少少會有差異之處
1⃣
首先,絕對會被提到的
就是高中微積分只教多項式函數的微積分
也就是說
高中三年級數甲就算認真學完以後
還是不會算 2^x 的微分或 log(x) 的積分
(以上是指普遍的應屆畢業生)
當然有些物理老師可能會偷教三角函數的微積分啦
所以我上面故意不提三角函數😅
所以有些同學如果覺得高中微積分讀的好
大學微積分就會躺著過的話
那可能就想的太美好了
因為大學微積分並不是只有多項式函數的微積分
所以要補足所有基本函數的微積分
還是需要花時間努力一下
而各種基本函數的微分我的頻道目前都已經拍好了
想看的同學可以透過這個連結:https://reurl.cc/Kknmln
2⃣
上面提到唸完高中微積分還是不會 log(x) 的積分
這個除了因為高中的微積分只有多項式的微積分以外
還有一個重點
那就是高中微積分並沒有分部積分
大學微積分中的積分技巧有很多種
變數變換、三角置換、分部積分、部分分式...
以上這些高中微積分頂多只會教變數變換
但其實多項式的積分也用不太到
所以事實上是沒有教什麼積分技巧的
普遍都是逐項積分
因此到了大學以後還是要花很多時間熟練這些技巧
而關於各種積分技巧
剛好我們丈哥有整理
有興趣的話可以參考這部影片:https://reurl.cc/1xadXW
如果你是高三應屆畢業生
建議先看過所有基本函數的微分
然後了解微積分基本定理
再來看這個影片
不然可能會看得有些吃力
3⃣
高中教過許多關於基本函數的公式
對了,忘記說明什麼是基本函數
基本函數就是形如常數函數、多項式函數
指對數函數、三角函數、反三角函數
以及以上這些函數在四則運算以下所產生出來的函數
對於這些基本函數的公式
到了大學,其實很多都用不到
當然現在因為教改的關係
用不到的公式已經越來越少了
但到底最後在微積分裡面絕對要記起來的公式到底有哪些呢?
我這邊簡單條列幾個
例如:
x^n ± y^n 的因式分解公式
x = a^(log_a (x))
log_a (x_1 + x_2) = (log_a (x_1)).(log_a (x_2))
log_a (x_1 - x_2) = (log_a (x_1)) / (log_a (x_2))
三角函數的和角公式
cos^2 (x) = (1 + cos(2x)) / 2
sin^2 (x) = (1 - cos(2x)) / 2
以上這些都是在學習大學微積分時必備的
當然還有其他的
以後有機會在專門拍一部影片來統整
至於其他如同 sin(x/2) 的公式
或是 a^(log_b (x)) = b^(log_a (x)) 這種比較炫技的公式
其實在大學微積分裡面都用不太到
所以大概都可以忘掉沒有關係
4⃣
提到函數的公式
就不得不提大學微積分多了哪些函數是高中沒講的
首先,高斯函數 [x]
這個在高中數學的正規教材裡面並沒有提到
但有些補習班會在寒暑假時拿來當做一個專題
另外是反三角函數
這個在以前台灣的高中數學是有講的
(大概民國 100 年以前都有講)
但現在已經刪掉了
所以這對現在的台灣高中生來說
無疑是增添了一份學習上不可避免的負擔
最後是形如 sinh(x) 和 cosh(x) 這類型的超越函數
(所謂超越函數就是無法滿足任何多項式方程的函數)
這些看起來跟 sin(x) 還有 cos(x) 的函數
常常會讓本來就快忘光高中數學的大一學生搞得更混亂
當然可能還有一些函數
但我目前最有印象的就是這三個
5⃣
上面提到超越函數
那接下來講講一個特別的超越函數:指對數函數
在台灣的高中數學裡面
早就透過描點和指對數運算律建立指對數函數的世界觀
但到了大學
大概會有一半的學校重來一次
在大學微積分裡面
會先透過極限定義 e 這個數字
然後再用指數運算律建立 e^x 這個函數
嚴格說起來應該是 exp(x) 這個函數
最後再用反函數的概念定義 log(x) 這個函數
講到這邊,不得不強調一點
高中的 log(x) 是以 10 為底數
而大學的 log(x) 則是以 e 為底數
並且常常會把 log(x) 縮寫成 ln(x)
所以在定義上的不同
這也是在初學大學微積分時一定要注意的
如果想知道 e 這個自然底數如何產生的話
可以參考這個影片:https://reurl.cc/g7jORL
6⃣
以上講的都是大多數台灣的學生初學大學微積分時所會遭遇到的
和高中微積分不同之處
最後我想講一個只有理工學院的同學會遇到的差異之處
那就是「極限的嚴格定義」
高中微積分在教極限的時候
通常只教直觀的極限
也就是透過計算和觀察函數的左右極限來求極限
但到了大學微積分
特別是理工學院的學生
就絕對逃不掉極限的嚴格定義
這邊列一下定義內容:
「lim_(x→a) f(x) = L」若且唯若
「對任意 ε > 0 存在 δ > 0 使得凡 0 < |x - a| < δ 均有 |f(x) - L| < ε」
噁心吧?
這個是絕大數理工學院的學生不可避免的主題
而且會出現在第一次小考或期中考裡面
然後很多學生就送分了
送還給教授分數
雖然說就算整個大學微積分都學完了但極限的嚴格定義從未真正了解過也沒差
但如果大學微積分一開始就考差
那是不是表示期末考就得更努力才能把及格分數追回來呢?
很多人都講反正十年後也用不到微積分
現在這麼努力幹嘛
其實我從來都沒有要所有人都要努力
我只要求想跟我學微積分的學生要努力
但說真的
就算十年以後用不到
但如果在學微積分時不努力
導致隔一年又要在重來一次
那不是把自己的人生拖延住了嗎?
學生階段的學習老實說很多都不是為了未來是否實用
而是為了當下
為了證明自己是一個能夠安裝任何知識的頭腦
證明自己是能夠撐過各種無聊和困難習題考試的人
然後透過這一次又一次的證明
去證明自己是一個可以理解問題並解決問題的人
如此而已
至於講未來會不會用到的那些人
我認為都只是想為自己當下的逃避找一個藉口而已
不然我也可以這樣想
反正我總有一天會死
我的教學影片總有一天會因為沒有人推廣而再也沒人看
那我幹嘛拍?
有時做一件事情或是學習
真的只是為了解決當下的其他問題而已
不用為每一件事情都去思考他的未來
特別是在學生時期
既然到了這間學校這個科系
就好好學習,累積漂亮的 GPA
當然不只學業要顧
如果行有餘力,也應該找公司實習累積經驗
不過這都是在大三大四以後才要思考的事
在面對「極限的嚴格定義」的當下
我強烈建議學生就是一個想法
不要想太多
試著盡自己最大的努力,在進入下一個章節以前
能把這個學的多透澈就多透澈
當然也要考量目前手上所有科目的重量
不能顧此失彼
但就盡最大努力
顧好所有科目
以後如果有機會
我會再拍影片或寫文章講講大學生如何取捨目前手上的學科還有大學如何選課比較聰明
嗯... 我又離題了
總之「極限的嚴格定義」對剛上大學的理工學院學生來說
絕對是大學生涯第一次試煉
如果想趁著開學前先偷念一點的同學
可以反覆觀看這部影片:https://reurl.cc/oLonv5
///
好啦,講了這麼多
不知道認真看完的有幾個
但就如同我上面講的一樣
很多事情做下去是不太會去想太多未來會不會怎樣的
當然這是建立在這件事不會傷害到自己且對他人有幫助的情況之下
這次大概就分享到這邊
如果迴響還不錯的話應該很快就會有下一篇
所以如果有認真看完的朋友們
覺得認同的話幫我按個讚或分享
覺得有話想對我說的話就在下面留言
有認真看完不知道要講什麼但想表示一下支持的
可以在下面留言「我有看完!」
其實我都蠻佩服關注我粉專的朋友們
也佩服有在看我頻道的同學們
因為我的貼文大多都很長
影片也都是超硬核教學影片
感謝支持我們的人們
因為有這些支持
我們才能繼續走下去😀
▋歡迎用訂閱行動支持數學老師張旭 YT 頻道‼
▋連結:https://reurl.cc/KkL3Vy
▋張旭老師大一微積分先修線上直播課程開課了🔥
▋連結:https://reurl.cc/Njol7x
▋歡迎參加許願池活動,留下你想聽我們講解的主題!
▋最新連結請到置頂文章:https://reurl.cc/WdZQDx
▋贊助支持我們
▋歐付寶:https://reurl.cc/vD401k (台灣境內請用這個)
▋綠界:https://reurl.cc/3Dp7Ll (台灣境外用這個)
▋flyingV:https://reurl.cc/g7p48N (2020/7/17 結束)
同時也有13部Youtube影片,追蹤數超過6萬的網紅Herman Yeung,也在其Youtube影片中提到,購買此 e-book (HK$199.00) 的連結︰ https://play.google.com/store/books/details/Herman_Yeung_Herman_Yeung_F_3_Maths_%E4%B8%AD%E4%B8%89%E6%95%B8%E5%AD%B8_Exerc...
因式分解公式法 在 一陽神 速數學 Facebook 的最佳貼文
高一
段考前注意重點事項
1-1
(1)甚麼是有理數?無理數?實數?
(2)如何判斷一個有理數是有限小數?
(3)循環小數是有理數還是無理數?
(4)循環小數改分數以及分數改循環小數(兩招)
(5)算幾不等式(各種特殊題型的操作)
(6)不等式的四則運算(小心二元二次型要先強迫因式分解)
1-2
(1)有理數的稠密性(無理數、實數也有稠密性)
(2)整數的分散性
(3)分點公式(內分與外分的判斷,加權平均數的觀點)
(4)標準絕對值相加、相減型(平台與左右雙截棍)
(5)各種形式的絕對值方程式與不等式(有的可以直接平方,有的必須分段討論)
(6)利用最小值秒殺方程式以及無解的判斷方法
(7)函數與方程式思想
1-3
(1)指數的定義要記好(指數的發展會限制底數的範圍),進而得到指數函數恆正
(2)指數律的運算
(3)在我們眼裡全部都是1
(4)認識對數以及其對數律前五條(至少)
(5)科學記號以及位數和最高位數字的判斷
#敬不甘平凡的我們
#現在真的每天睡不飽
#中秋沒烤到肉呀呀呀
因式分解公式法 在 辣媽英文天后 林俐 Carol Facebook 的最佳貼文
Wow! 滿滿滿的會考數學重點吔😍
來來來,紙筆趕快準備好!
數學科會考精華重點,
帶你一手掌握致勝關鍵!
數學科會考30天衝刺重點
考前最後30天,
建議同學,調整好生理時鐘,
讓自己的大腦習慣
在10:30到11:50這段時間算數學。
切記每次考試前都花10分鐘的時間快速總複習,
把公式、重要性質、常忘常錯的地方,
用這個關鍵10分鐘掃過一遍。
考前最後30天以算新題
培養對沒看過的題目的臨場反應為主,
有錯的題目訂正完,
把關鍵寫在考前10分鐘的快速總複習筆記上,
下次考前再複習一次!
以下是會考精華重點,
這些重點不只會在選擇出現,
還可能出現在非選!
好好把握下列重點,
拿到數學滿分的成績單時別太意外!😂
1.正負數與數線:
「絕對值」代表「到原點的距離」、
「相減取絕對值」代表「兩點距離」
這種代數轉幾何的考法總是考不膩;
科學記號的應用問題通常都會搭配四則運算;
新舊數線轉換切記「差成比例」!
2.因倍數與公因倍數:
質數的判定、互質的判定還有短除法請熟練;
難題用標準分解式處理!
3.分數:
四則運算切記「先乘除,後加減,但次方優先!」,
還有括號的處理務必「由小到大」且小心變號!
4.一元一次方程式:
一元一次式的「化簡」切記「只能通分,不能同乘」;
應用題考列式也很常見。
5.二元一次方程式:
基本的分式解聯立請小心隱形的括號;
近年來也常考三格漫畫的應用問題,命中不用太訝異!
6.坐標平面:
基本的象限考正負;點的移動x右加左減,y上加下減;
「點到x軸的距離」=「y坐標取絕對值」,
「點到y軸的距離」=「x坐標取絕對值」;
水平線y相同,鉛直線x相同;
還有最常考的二元一次直線方程式畫圖!
7.比與比例:
雙比例問題考到爛,務必調整到符合題意。
8.函數:
線型函數應用問題可以利用「差成比例」處理!
9.一元一次不等式:
有基本的一元一次不等式求x範圍;
進階有天平問題和水量的應用問題。
10.乘法公式與多項式:
利用乘法公式求值請用力觀察數字之間的關聯性;
多項式長除法也很愛考;因式倍式關係要會看。
11.二次方根與勾股定理:
基本的化成最簡根式、有理化、四則運算要熟;
進階的根號估計也是大熱門;
勾股定理近年來都搭配後面幾何一起考。
12.因式分解:
通常喜歡考提公因式因式分解,再搭配次方的運算請小心。
13.一元二次方程式:
基本的十字交乘、配方法解x;
給兩根求方程式用倒帶;
觀念題小心消去未知數可能會減根。
14.等差數列:
基本的循環用除法看餘數、
等差數列換首項公差處理、
等差數列求和都是基本款;
近幾年等差數列喜歡搭配不等式請小心!
15.平面幾何:
對稱圖形不難;
外角定理在角度的計算超常用;
中垂線性質到兩端點等距、
角平分線性質到兩夾邊等距考到爛!
30度 - 60度 - 90度 邊長比「1:根號3:2」必考!
多邊形內角和、正多邊形內角和外角
要算到不小心背起來;
正六邊形、正八邊形、正12邊形
都是近年來考試重點。
16.三角形:
三角形兩邊之和大於第三邊、
大角對大邊小角對小邊偶爾會出;
三角形的全等證明要有考非選的心理準備。
17.平行與四邊形:
遇平行線延長會比較容易看;
平行時,同位角、內錯角相等,
同側內角互補超常用;
遇梯形常做的幾種輔助線要複習。
18.相似形:
常見的相似三角形組合要複習;
解題利用相似形的
「對應角相等」、「對應長成比例」、
「面積比等於對應長度平方比」這些性質;
要宣告三角形相似用相似性質,
要宣告非三角形的多邊形相似
則要一一檢查每一個對應角都相等,
每一個對應邊都成比例!
19.圓形:
考扇形、弧長、弓形算是基本款;
考相切要想到(1)垂直(2)切線段等長;
圓周角、圓內角、圓外角、弦切角也都很常考;
兩圓相切要連接兩圓圓心和切點;難題想到對稱性!
20.三角形的三心:
(1)外心:
到三頂點等距;
直角三角形外心在斜邊中點;
等腰三角形的R要會求;
角度可以利用圓周角和圓心角關係,
或是等腰三角形處理。
(2)內心:
到三邊等距;
r 的兩種求法請複習;
長度還可考求切線段長;
角度可利用角平分令x、x、y、y;
面積的兩種考法請複習。
(3)重心:
長度想到2比1,
面積想到六塊小三角形面積相等
21.二次函數拋物線:
開口的方向和大小要會看;
配方法求頂點求最大最小值必考!
考平移要想到
(1)看頂點的移動(2)開口不變a不變;
難題想到對稱性!
22.立體圖形:
近年來喜歡考空間觀念中的展開圖;
考角柱算是中規中矩;
靈活考題可能會搭配水量甚至考不等式!
23.統計:
給原始資料、給表、給直方圖、給圓餅圖,
中位數都要會求!
盒狀圖和圓餅圖也很常考,
特別是盒狀圖常會問四分位距的相關問題!
進階喜歡考圖形的轉換;
還有對稱圖形的平均數和中位數會相等!
24.機率:
列表討論、畫表格、畫樹狀圖必可解!
因式分解公式法 在 Herman Yeung Youtube 的最讚貼文
購買此 e-book (HK$199.00) 的連結︰
https://play.google.com/store/books/details/Herman_Yeung_Herman_Yeung_F_3_Maths_%E4%B8%AD%E4%B8%89%E6%95%B8%E5%AD%B8_Exercise?id=K6AREAAAQBAJ
部分教學影片︰
https://youtube.com/playlist?list=PLzDe9mOi1K8pOMLw0MItoo8uCoKpeHKMv
Herman Yeung F.3 Maths 中三數學 (Exercise 3C) (500題)
適合中三下學期至中三升中四暑期的同學學習
500 條題目,內容包括:
1. Probability 概率
2. Statistics 統計學
3. Polynomial 多項式
4. Quadratic Equation 二次方程式
5. Logarithmic Function 對數函數
的 "初中版"
因式分解公式法 在 Herman Yeung Youtube 的精選貼文
HKDSE Mathematics 數學天書 訂購表格及方法︰ http://goo.gl/forms/NgqVAfMVB9
課程簡介︰ https://youtu.be/Rgm7yUVG9cY
------------------------------------------------------------------------------
DSE 數學 Core 天書 F 第1堂 (共1小時54分鐘) https://www.youtube.com/playlist?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
DSE 數學 Core 天書 F 第2堂 (共1小時52分鐘) https://youtu.be/DiWwBF02dPw?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
DSE 數學 Core 天書 F 第3堂 (共2小時7分鐘) https://youtu.be/lJgfRqW3EbM?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
DSE 數學 Core 天書 F 第4堂 (共1小時49分鐘) https://youtu.be/uko3FYGwHGM?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
Past Paper Demo (太多,無法估計) https://youtu.be/41cdF_BqxME?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
------------------------------------------------------------------------------
DSE 數學 Core 天書 F 的內容︰
1 -- Identity, Formula and Polynomials 恆等式、公式及多項式
2 -- More about Equations 進階方程
3 -- Properties of Circles 圓的特性
------------------------------------------------------------------------------
HKDSE 數學 Core 各天書 的內容︰ https://www.facebook.com/hy.publishing/photos/a.312736375489291.68655.198063650289898/933817946714461/?type=3&theater
HKDSE 數學 Core 特別快車班
28堂 (共7本天書) 完成整個 HKDSE 數學 Core
(中一至中六) 要考的所有課題,
適合任何考 HKDSE 的同學上課 (中四至中六都合適)
(p.s. Herman Yeung 所有天書,中英對照)
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
Blogger︰ https://hermanutube.blogspot.hk/2016/02/herman-yeung-main-menu.html
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
Instagram︰ https://www.instagram.com/hermanyeung_hy
------------------------------------------------------------------------------
因式分解公式法 在 Herman Yeung Youtube 的最讚貼文
HKDSE Mathematics 數學天書 訂購表格及方法︰ http://goo.gl/forms/NgqVAfMVB9
課程簡介︰ https://youtu.be/Rgm7yUVG9cY
------------------------------------------------------------------------------
DSE 數學 Core 天書 F 第1堂 (共1小時54分鐘) https://www.youtube.com/playlist?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
DSE 數學 Core 天書 F 第2堂 (共1小時52分鐘) https://youtu.be/DiWwBF02dPw?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
DSE 數學 Core 天書 F 第3堂 (共2小時7分鐘) https://youtu.be/lJgfRqW3EbM?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
DSE 數學 Core 天書 F 第4堂 (共1小時49分鐘) https://youtu.be/uko3FYGwHGM?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
Past Paper Demo (太多,無法估計) https://youtu.be/41cdF_BqxME?list=PLzDe9mOi1K8rGQfY7lSwPfEpri_y3XBqG
------------------------------------------------------------------------------
DSE 數學 Core 天書 F 的內容︰
1 -- Identity, Formula and Polynomials 恆等式、公式及多項式
2 -- More about Equations 進階方程
3 -- Properties of Circles 圓的特性
------------------------------------------------------------------------------
HKDSE 數學 Core 各天書 的內容︰ https://www.facebook.com/hy.publishing/photos/a.312736375489291.68655.198063650289898/933817946714461/?type=3&theater
HKDSE 數學 Core 特別快車班
28堂 (共7本天書) 完成整個 HKDSE 數學 Core
(中一至中六) 要考的所有課題,
適合任何考 HKDSE 的同學上課 (中四至中六都合適)
(p.s. Herman Yeung 所有天書,中英對照)
------------------------------------------------------------------------------
Please subscribe 請訂閱︰
https://www.youtube.com/hermanyeung?sub_confirmation=1
------------------------------------------------------------------------------
Blogger︰ https://hermanutube.blogspot.hk/2016/02/herman-yeung-main-menu.html
Facebook︰ https://www.facebook.com/hy.page
YouTube︰ https://www.youtube.com/HermanYeung
Instagram︰ https://www.instagram.com/hermanyeung_hy
------------------------------------------------------------------------------
因式分解公式法 在 因式分解法_百度百科 的相關結果
如果把乘法公式反過來,就可以把某些多項式分解因式,這種方法叫公式法。 平方差公式:a 2 -b 2 =(a+b)(a-b);. 完全平方公式:a ... ... <看更多>
因式分解公式法 在 多項式的因式分解1.4 的相關結果
利用特殊乘積與因式分解技巧分解多項式。 ▫ 利用綜合除法因式分解三次或更高次的多項式。 ... 用二次公式求下列多項式的實數根。 a. 4x2 + 6x + 1 b. x2 + 6x + 9. ... <看更多>
因式分解公式法 在 因式分解要掌握的7種方法和4種解題思路,太簡單了! 的相關結果
本講的重點是因式分解的綜合訓練,重點和難點均在於四種因式分解方法的靈活運用。四種方法分別是:提公因式法、運用公式法、分組分解法、十字相乘法:形如 ... ... <看更多>