--課程已於 2020 年 10 月更新--
本課程是關於多執行緒和併發程式設計的基礎知識和一些平行計算的概念。
在 21 世紀,隨著大數據( Big Data )和機器學習( Machine Learning )的出現,這個話題變得越來越流行。
課程將考慮執行緒( threads )、同步( synchronization )和鎖( locks )等底層概念。
接著將介紹並行程式庫( concurrent library ): 當然,在實現多執行緒應用程式時,可以使用內建的類別( classes )和介面( interfaces )。
然後將開發一些小程式作為多執行緒的展示案例 : 用餐-哲學家問題或圖書館內的學生模擬。 最後是關於平行計算和 MapReduce。
https://softnshare.com/multithreading-and-parallel-computing-in-java/
平行計算 應用 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
瞄準AIoT龐大商機 驅使產業價值鏈持續重組洗牌
魏淑芳 2019-05-30
伴隨物聯網(IoT)應用蓬勃興盛,加上人工智慧(AI)技術日趨成熟精進,兩大技術雙雙躍為企業數位轉型過程中不可或缺的要素;在此前提下,近年IoT與AI逐漸匯流為AIoT嶄新面貌,使AI得以藉由IoT滲透至各個產業與生活應用情境,連帶讓AIoT背後所表彰的邊緣運算概念,成為繼雲端運算後另一個熱門辭彙。
所謂邊緣運算,簡單來說,可視為從雲端到邊緣的移動,意即把原本透過雲端資料中心執行的AI機器學習推論工作,移往網路邏輯上的邊緣節點來處理,由於邊緣節點鄰近於用戶端設備、也就是數據來源,因而能夠以近乎即時的速度來處理資料,不僅消除了以有限網路頻寬傳送大量原始數據的負擔,更消除了凡事唯雲端是問、久候雲端下達指令的依賴性,這些特性,對於類似像自駕車等時間敏感性(Time-Sensitive)應用,可說非常重要。
Toyota為實現MaaS概念,邀集必勝客、Mazda、Uber、亞馬遜等盟友創立移動服務事業聯盟,意在讓其新開發的e-Palette自駕電動概念車,得以蛻變為無人化快閃商店。來源:SlashGear
於是乎,AIoT被各方人士寄予厚望,看好這股趨勢可望帶動諸如半導體、邊緣運算、5G網路、智慧車輛等相關技術領域之創新發展,進而引領第四波科技創新,促使智慧時代早日到來。根據知名研究機構Gartner的預估,時至2022年,在多達8成比重的企業IoT專案當中,都會含括AI解決方案,反觀現今,AI在IoT專案的佔比不過一成左右,顯見未來還有極大的成長空間。
AI與IoT 少了任一方都難形成大局
業者形容,AIoT的背後邏輯便是「AI+IoT」,其中AI像是大腦,足以將設備的簡單連接升級為智慧連接,從而讓萬物互聯演化成為萬物智聯,至於IoT,則是使AI得以發揮行動力的載體,猶如人類的眼睛、耳朵、鼻子與皮膚一般,可以感知你我周遭的環境事物,從中彙集大量數據,做為AI進行機器學習、深度學習的重要養分;當資料愈多、訓練素材愈多,AI大腦就會愈來愈聰明,做出愈來愈準確明智的決策。
換句話說,假使僅有AI大腦,而沒有連結IoT感知能力,無從收集各種環境資訊,空有強大的演算法、運算力也是枉然;相反的,只有IoT而未搭配AI,則像是只有感官卻無法通達大腦來做出睿智反應,那麼縱然收集的資料量再如何龐大,充其量仍是Raw Data,沒有辦法轉換成為有價值的資訊。由此可見,唯有AI+IoT,才足以創造最大化價值。
談及AIoT的落地應用,無庸置疑的,自駕車(Autonomous Vehicles)肯定是討論度名列前茅的熱門題材。顧名思義,研發自駕車的初衷即是取代人為駕駛,然而要達成這個目標,需要整合眾多科技,方能讓原本以機械性能為中心的汽車,開始擁有感知與學習能力,進而靠自身的力量做到精準判斷與操控,終至平安順利地上路行駛。
探究自駕車的感知層面,也就是賴以隨時掌握周遭環境資訊的配備,除了現階段已被廣泛運用的GPS、雷達、超音波,及結合影像辨識技術的攝影機等相關技術方案外,簡稱為光達的LIDAR,更被喻為是實現全自動自駕的先進感測技術,只因光達的涵蓋範圍廣闊,而且比較不受到諸如光線、溫度或天候等環境因素影響,所以可提供更加可靠、精確的偵測能力。
一旦車上搭載幾顆光達,便可明顯提升感測效果,惟目前光達的價位偏高,未來唯有下修,才可望被多數的自駕車開發商所接受,逐漸成為標準配備,所幸目前已有業者正在努力運用不同的技術,嘗試發展出價格更加實惠的光達產品。
至於自駕車的大腦,則需仰賴AI 軟硬體及開發平台,來訓練所需模型。GPU領導廠商Nvidia有感於自駕車在面對複雜道路環境之際,勢必需要進行大量平行計算、以便能做出即時反應,所以一方面提供高效能的運算晶片 DRIVE Xavier,二方面則提供一個完整的DRIVE AV平台,以利開發者因應各種環境感測技術、分別建構不同的模型,甚至透過虛擬環境來強化訓練(藉以納入一般實際道路測試鮮少遇到的狀況),且能利用AR技術,裨益駕駛人在行駛過程中一併獲知周遭環境資訊。
憑藉異業合縱連橫 打造完整AIoT生態系
值得一提的,在AIoT的驅動下,已為自駕車注入許多創新設計思維、甚至是顛覆性的商業模式,使得相關的生態系更為多元豐富。比方說日系汽車大廠Toyota迎合MaaS(Mobility as a Service)概念,發想創立移動服務事業聯盟,並已延攬像是必勝客、Mazda、Uber乃至亞馬遜等諸多盟友,意在將其新開發的e-Palette自駕電動概念車,型塑為無人化快閃商店,隨時移動至不同地點展開營運。
此外聚焦發展自動駕駛軟體的英國新創企業Oxbotica,則與線上超市業者Ocado締結合作關係,將藉由CargoPod小型自駕貨車提供短距移動送貨服務,當貨車抵達後,消費者只需輸入密碼便能取貨。
事實上AIoT商機甚多,絕對不僅止於智慧汽車,其他像是智慧醫療、智慧製造或智慧能源等等領域,也都蘊含莫大的想像空間;探究這一條條不同的價值鏈成形,背後都亟需堅強的產業鏈加以撐持,甚至需要涵蓋電子零組件、系統組裝、軟體介面、服務設計等來自四面八方的廠商群策群力,方能透過一站式的供應模式,開創 AIoT 大局。
如同SEMI微機電及感測器產業聯盟(MEMS & Sensors Industry Group;MSIG)的成軍,基本上就是一個典型例子;因此可以預見,隨著AIoT浪潮席捲,異業合縱連橫的案例將會不斷上演,目的在於重塑產業價值鏈,只因在AIoT世界,確實很難有單一廠商足以通吃感測器、雲端到AI整個市場。
附圖:除了自駕車外,包括智慧製造、智慧醫療等諸多領域,都有愈來愈多相當成功的AIoT應用案例。例如日本的輪胎廠商Bridgestone便善用AIoT技術,為生產設備賦予自主學習與行動的能力,因而大幅提高生產效能與良率。DIGITIMES攝
資料來源:https://www.digitimes.com.tw/iot/article.asp…
平行計算 應用 在 動區動趨 BlockTempo - 由社群而生的區塊鏈媒體 - Media for Blockchain Facebook 的最佳解答
【區塊鏈項目】
>> 小編補昨天的新聞,話說Qtum上個月才最低才10塊,剛剛就暴漲到了50塊呢~
---------------
日前,美國個性化人工智能(Personal AI,PAI)領軍企業ObEN宣布將與Qtum量子鏈共建區塊鏈實驗室。
ObEN和Project PAI認為科技界最熱門的兩大IP人工智能和區塊鏈就是一個整體。
PAI鏈包含三個模塊,驗證層,智能網絡層和數據層。
其最核心的模塊就是智能網絡,其將區塊鏈算力應用到人工智能平行計算,降低人工智能計算的成本,提高效率,把算力變成生產力、更有價值......