創新工場和BCG波士頓諮詢合作的「+AI改造者」系列:創新工場投資的追一科技,用領先的「數位員工」解決方案幫傳統企業降本提效。
改造者系列:傳統企業應用AI別想「短平快」 -- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智慧在大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
隨著當前人口紅利趨弱,企業的用工成本增加,「數位員工」存在大量的市場需求。成立於2016年的追一科技,通過其核心的AI語義分析技術,幫助傳統企業利用人工智慧技術解決勞動力短缺的問題,實現降本提效。
在采訪中,追一科技首席戰略官成捷認為,傳統企業應該扭轉AI應用「短平快」的認知,投入時間和精力去梳理和構建特定於AI的業務流程,以達到正向的循環。
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
在企業服務領域,AI企業,即「改造者」,能夠最直接地賦能企業提升管理效率與節降成本。追一科技便是這一賽道的佼佼者之一,借助自然語言處理技術,其「AI數位員工」可以勝任線上客服專員、行銷專員、資料質檢員、銷售上崗培訓師、反洗錢專家等崗位。
■本期受訪嘉賓:成捷
追一科技是「AI數位員工」提供商,主攻深度學習和自然語言處理,提供智慧語義、語音和視覺的AI全棧服務。追一科技的AI數位員工智慧平臺與業務場景深度融合,提供不同類型的AI數位員工,滿足企業和政府使用者服務、行銷、運營、 辦公等多種場景的智慧化升級需求,幫助他們降本提效,改善用戶體驗,驅動創新和增長。
成捷是追一科技首席戰略官。在此之前,他曾任職于麥肯錫與騰訊。成捷先生擁有清華大學學士學位與加州理工大學博士學位。
■對談實錄
Q1:追一科技為何選擇幫助傳統企業應用AI?
成博士:追一科技的定位是「AI數位員工」服務商,本質上是智慧軟件,面向企業提供AI企業軟件來説明其降本增效。當前,隨著人口紅利趨弱,企業用工成本水漲船高,員工的流動性也在增加,市場上存在大量對於智慧客服、行銷、內部溝通等的需求,企業希望由機器解決勞動力短缺問題,並為企業降本。而追一的核心AI能力是語義分析,即機器如何像真人一樣理解和表達文本資訊,再結合創始人團隊的企業服務背景,恰好能夠滿足我們稱之為「數字員工」的市場需求。追一的語音、視頻應用能夠滿足銀行、運營商等企業線上交互管道上海量的對話交互需求,涉及行銷和業務辦理等,幾乎等同于傳統呼叫中心上千乃至上萬的人工。
同時,我們也看到近些年大量企業在推進資訊化建設、雲建設,企業數位化的基礎在不斷成熟。許多企業已經積累了大量結構化或非結構化的資料,但並不知道如何應用,不知道如何從海量資料中提煉洞察。追一可以説明他們通過資料分析來實現更精細化的運營,從而提升人的產能。以保險電銷為例,通過對銷售人員的資料分析,追一能夠提煉高績效員工值得借鑒的話術和知識點,標準化後以輔助推廣培訓。
Q2:在賦能傳統企業應用AI的過程中,追一遇到過哪些挑戰?又是如何應對的?
成博士:AI火爆之後,大部分企業的心態是先投資一部分進行嘗試,其中有些企業成功地體驗到了AI的成效,於是自發地持續梳理其業務流程、構建並優化知識庫,進入了一個正向循環,投入產出比也合理,逐漸能夠覆蓋到更多場景和業務部門。
而有些企業原本對AI的預期是「隨插即用」,期待AI能在短期之內帶來巨大改變,他們應用AI的效果往往就無法達到預期,也很難將AI的效用發揮到最大,往往在一次采購之後就沒有下文了。AI企業要扭轉傳統企業認為AI「短平快」的認知,投入時間和精力去梳理和構建特定於AI的業務流程,才能步入正向的循環。
其次,許多較早開始應用AI的企業組織規模都很大,涉及到很多不同的部門——分條線、分版塊、分職能等。如何能夠協調大型企業多部門之間不同的利益和訴求,這對於AI應用而言是另一大難點。以銀行為例,總行負責智慧化建設的IT或科技部門往往考慮更有整體性的、大量部門可以通用的、長期的解決方案,且看中綜合性和可持續性更強的供應商。而業務部門往往偏好更迅速、更精准的解決方案,傾向于先行自行采購。AI企業就需要平衡和兼顧雙方的需求。我判斷在中長期會有多流匯聚的趨勢,即企業的科技部門會統籌AI智慧化建設的規劃以及技術合作夥伴的選取,總部科技部門和一線業務部門會一同系統性地梳理需求。
同時,在業務梳理過程中,AI企業也需要增進其對行業的理解,從而幫助傳統企業梳理出哪些業務或場景更有AI價值、更容易落地,以塑造短期速贏。追一在進入每個行業時都需要花大量時間瞭解業務流程,建立行業知識庫。
最後,AI不像ERP之類的傳統軟體系統,沒有成熟的全鏈路玩家,還處在比較初級的階段,因此端到端的、定制化的AI服務是稀缺資源且具差異化優勢——系統實施上,大型企業系統多,往往也不標準化,十分消耗人力;知識庫定制上,不同企業的業務流程不同、知識不同,需要定制知識庫;軟體功能定制方面,不同規模、業務類型的企業依然存在不同的需求;哪怕在部署之後,AI企業依然需要持續優化場景,根據交互的效果持續優化業務流程,並試圖拓展新的場景。
Q3:如何理解追一「開放共贏的生態合作體系」?
成博士:追一對各類企業都秉持著開放合作的心態,我們識別了四大類合作夥伴——平臺夥伴、行業夥伴、區域夥伴和咨詢夥伴。
1. 平臺夥伴包括騰訊雲、華為雲等企業,平臺夥伴能夠提供基礎設施,起到「鋪電線」的作用。憑藉平臺夥伴強大的客戶資源和銷售網路,追一能夠觸達更多的終端客戶。而追一能在平臺夥伴通用性的基礎設施之上提供特定垂直領域的解決方案,使面向客戶的解決方案更好落地實施。
2. 行業夥伴指特定行業領域的資訊科技企業,他們相比其他夥伴有更深的行業理解以及更多行業內的客戶資源,也願意在科技方面進行嘗試。追一可以與行業夥伴共同拓展行業內的科技解決方案。
3. 區域夥伴指在當地有較強商務關係、對當地市場瞭解較深入的夥伴。
4. 咨詢夥伴則能夠提供整合咨詢服務,在數位化咨詢、財務咨詢等細分方向擁有豐富的咨詢經驗。
追一在生態合作中除了能夠提供行業定制化的技術方案之外,還可以分享和拓展渠道資源,幫助系統集成商、ISV增收。長遠來看,追一希望把產品服務做得更加標準化,可供他人調用,也可以在自有平臺上集成協力廠商產品和服務。
Q4:你認為未來AI企業的發展趨勢是什麼?
成博士:大趨勢一定是行業越做越深、場景越做越精,提供整體性的行業AI解決方案。這也是追一未來發展的優先事項。
此外,AI企業還應當繼續推進技術普惠,在當前AI大多只在大型企業使用,而未來應當覆蓋更多中小規模的企業。AI企業能做的是把大客戶的主流需求打磨好、標準化,大量復用從頭部企業積累的垂直領域專識,再在過程中逐步建立跨行業復用的能力。
■要點回顧
1.「人工智慧即服務」(AI-as-a-service)依然處於初級階段,還沒有成熟的全鏈路玩家,因此端到端的、定制化的AI服務能夠打造差異化的競爭優勢。
2. 傳統企業需要抓住時間窗口,憑藉多年深耕行業的經驗積累,在AI技術企業追趕行業知識的檔口自我顛覆、自我革命。
3. 對「改造者」而言,「先縱後橫」不失為可行的策略——欲實現持續穩定的AI發展,需要長期深耕垂直領域,持續積累行業know-how,並將縱深積累標準化,以複製到更多的垂直行業。
戰略人力資源管理 定義 在 台灣物聯網實驗室 IOT Labs Facebook 的最佳貼文
跨界圍攻:「AI 視覺」公司已集體殺入智能駕駛圈
2021-05-22
雷鋒網
如今的智能汽車賽道,說挨肩迭背也不為過。
新勢力派引領變革,最為二級市場所看好;泛網際網路派占流量高地,擅技術遷移;傳統車企派根基夯實,品牌名聲享譽在外。
甚至財大氣粗的某地產派也曾放下豪言――力爭 3-5 年成為世界規模最大、實力最強的新能源汽車集團。
如華山比武般,大俠們個個嚴陣以待,各方勢力黃巾高擎,左右開弓。
你看看,前有行業鐵幕,中夾破釜沉舟之心,後是險峻江湖,哪還有初進牛犢的落腳之處?
即便如此,在月前燥熱尚未消退的上海車展後,鮮少被提及的AI視覺公司還是擠了進來。
看慣了巨頭們的聲勢浩蕩,轉身發現AI視覺企業們的入局講究一個循序漸進,起承轉合。
而他們的悄然進入,也給智能駕駛領域增添了幾段新故事。
海康威視:左手自研、右手投資
AI安防老大哥海康,深耕智能駕駛市場履行一貫的低調風格。
其對智能駕駛的綢繆始於2015年,當時海康內部計劃開展新業務,起初確定的業務有三:海康汽車電子、海康機器人、海康螢石。
2016年7月,耗資1.5億的海康汽車技術正式成立。
在此前後,海康還分別於2016年6月投資了威視汽車科技,2017年7月成立了海康汽車軟體。
2018年是海康智能駕駛的上升之年,市場渠道、技術研發上均有突破。
2018年2月,他們上線高級駕駛輔助系統、自動泊車APA+,同年又成功打入2019款保時捷卡宴的配置中。
汽車產業以穩為重,鏈條長、利益盤根錯節,新入者切入並不容易,而海康卻出其不意一舉打入高端。
數據顯示,截至2018年底,海康汽車已經通過了20家OEM的審核並成為其合格供應商,公司的主要客戶包括一汽集團、北京汽車、上汽榮威、上汽名爵、本田汽車等。
其中,定點項目超過200個,已量產的項目超過100個,覆蓋500家渠道合作夥伴。
成立子公司自研之外,投資也是海康較為看中的一大路徑。
在成立汽車電子公司之前,海康就曾在2016年入股毫米波雷達企業森思泰克,並成為後者的第二大股東。
2013年成立的森思泰克既是毫米波雷達第一批探路者,也是成績較為優秀的領軍企業之一。
森思泰克創始人秦屹是英國海歸的雷達專家,在英從事雷達研發和製造十餘年。
據悉,森思泰克所聚團隊成員中80%具有軍工背景,掌握雷達硬體、軟體和量產工藝等幾乎全部核心技術。
據悉,森思泰克毫米波雷達在北京、石家莊設研發中心,在蕪湖設總廠,在杭州設車載事業部。
石家莊,有軍工雷達大本營之稱,軍民毫米波雷達研發人才密集,且電科雷達研發54所和13所都在石家莊。
森思泰克也頗為爭氣。
2019年,思泰克首次實現大批量77GHz車載毫米波雷達國產化、突破國際巨頭壟斷。
森思泰克的77GHz毫米波雷達成為國內首個真正實現「上路」的ADAS毫米波雷達傳感器。
目前,森思泰克已成為紅旗、一汽、韓國現代、東風日產、長城、長安等國內外車企體系內供應商。
海康與森思合作的高分毫米波成像雷達+視覺融合技術,或許將對壘低線束雷射雷達。
大華股份:立足整車,三電、網聯、自動駕駛多點齊發
零跑汽車脫胎於大華股份的汽車部門,獨立後獲得了大華股份的技術和資金支持。
2015年,大華股份副董事長兼任大華股份CTO朱江明親自下場,成立零跑。
經歷2019年新能源補貼大退坡,不少新勢力造車企業已經出現嚴重資金問題,且變現存疑。
零跑汽車亦不例外。
2018年,零跑虧損 3.07 億元後,2019 年上半年又持續虧損約 2 億元。
2019年1月4日,零跑汽車第一款車S01上市,該車2019年全年交付約1000輛。
對於連續虧損的零跑,唱衰論一直也在網上發酵。
朱江明對此表示,「即使不融資,零跑也能再活三年。」他透露,大華股份將持續為零跑輸送資金,「當然我們希望能更多的融資,發展得更快些。」
在經歷融資受阻後,2021年伊始,零跑官宣融資43億元,合肥政府投資平台亦在其中。
今年年初,此前曾投資蔚來的合肥市政府與零跑方面簽訂戰略合作協議,未來合肥方面將對零跑B輪融資投資約20億元,並展開更多合作。
現金流方面,從不被業界看好,到巨額融資的到帳,仿佛又讓市場看到了可能性。
技術層面,零跑汽車稱自主研發了三電系統、智能網聯繫統、自動駕駛系統三大核心技術,並完全掌握自動駕駛核心硬體平台和算法技術,實現對自動駕駛感知、決策、執行層關鍵技術的自主化全覆蓋。
產品層面,零跑汽車目前旗下擁有3款量產車型,分別為:零跑T03、零跑S01以及零跑C11。
三款產品風格各異,銷量不一。
2020年,零跑汽車官方消息稱,2020年累計銷量達11391輛,其中T03為主力軍,貢獻了10266輛。
創始人朱江明也底氣頗足:「2023年零跑進入造車新勢力TOP3、2025年在國內新能源汽車市占率達到10%」。
商湯:求精感知技術,並進艙內艙外
與其他AI獨角獸相比,商湯在自動駕駛上布局較早,也更全面。
2017年進軍自動駕駛,商湯的汽車產業布局可分為艙內(智能車艙)和艙外(智能駕駛)兩大層面。
智能車艙層,基於前裝量產解決方案,以視覺感知技術為錨點,由點及面,覆蓋用戶從上車到用車的多個場景。
商湯的SenseAuto Cabin智能車艙解決方案包括駕駛員感知系統、座艙感知系統、智能進入等等功能。
據悉,在過去的兩年多時間裡,商湯已經拿下了30多個國內外頭部夥伴的智能車艙定點量產項目,覆蓋車輛總數超過1300萬輛,其中10 余個項目已經實現了量產交付。
智能駕駛層,商湯選擇與主機廠合作,做汽車廠商(OEM)及一級供應商(Tier1)的解決方案供應商。
在自動駕駛感知、決策和執行三大要素中,汽車廠商和Tier1占據重要角色。
2017年,商湯與OEM廠商本田簽訂了為期5年的長期合作協議,研發適合乘用車場景的L4級自動駕駛方案。
2018年,商湯完成杭州、上海半開放場地內實現無接管自動駕駛。2019年,在日本落地「AI自動駕駛公園」,將用於自動駕駛汽車的研發和測試,並面向公眾開放。
商湯的自動駕駛業務定位,是以視覺為主,其他元素為輔。
視覺之外,商湯在高精度地圖和雷射雷達、毫米波雷達等方面皆有技術儲備。
通過搭配多種不同傳感器,實現感知、分析預測、決策規劃控制、城市級三維地圖重建及無人車高精度定位能力等技術功能。
目前,商湯對自動駕駛技術進行了多次疊代,形成了一套較為成熟的智能駕駛方案:SenseAuto Pilot智能駕駛解決方案,聚焦 L2+ 級高級輔助駕駛至L4級自動駕駛創新,並在上海車展首次發布SenseAuto Pilot-P駕駛領航方案。
軟體之外,2019年3月,商湯還推出首款原創機器人SenseRover X自動駕駛小車,這是款針對自動駕駛的教學產品。
奧比中光:戰投+自研,兩條腿走路
奧比中光是AI初創企業中對智能汽車投入最多的公司之一。
作為一家AI 3D感知技術方案提供商,成立於2013年的奧比中光現今已在3D傳感領域深耕近8年。
3D傳感作為人工智慧領域最核心的視覺感知技術,融合了晶片、算法、光學、軟體等多交叉學科技術,是人工智慧時代感知識別、新型人機互動等最為核心的技術載體。
除3D結構光外,奧比中光在雙目、iTOF、dTOF、雷射雷達等主流3D視覺感知技術領域也有長遠布局。
早在2018年,奧比中光就投資雷射雷達晶片級解決方案提供商飛芯電子。
飛芯電子成立於2016年,是一家專注於光電設備、雷射雷達研發、集成電路設計的高新技術企業。
成立僅2年,飛芯電子獲得了博世等注資。
據悉,飛芯電子以研發、生產雷射雷達系統及核心晶片為主要業務,客戶群體主要面向國內外汽車、機器人、無人機等生產研發廠商。
飛芯電子稱,其針對行業痛點,採用了連續波載調製或相干外差探測方案,利用焦平面點雲測距技術,滿足較高的空間解析度和較大的視場角,探測距離可超過200m,且無需複雜昂貴的機械掃描裝置,不斷提高系統可靠性,也使獲得的圖像更為清晰。
2019年4月,奧比中光成立車載3D視覺傳感方案提供商奧銳達。
奧銳達的業務重心在智能座艙,產品包括ToF攝像頭模組、雷射雷達等硬體以及3D ToF智能座艙方案。
承襲了奧比中光的3D視覺感知技術,奧銳達可為智能汽車帶來DMS、OMS、手勢識別、人臉識別、身份驗證等多種3D化智能功能。
其金融級安全的3D人臉識別方案,保護駕乘人員的信息安全;通過3D-ToF 攝像頭,實現多區域手勢控制;同時,智能汽車還可以通過3D信息,判斷駕乘人員體型、座艙內位置等。
近日,奧銳達還發布了為智能汽車量身定製的3D ToF智能座艙方案。
虹軟:主攻艙內,走軟硬一體之路
2018年,為應對手機市場見頂飽和,虹軟正式將業務從智慧型手機領域拓展至智能汽車、IoT等領域,一舉橫向突進自動駕駛市場。
虹軟科技創始人兼CEO鄧暉曾表示,未來每輛汽車裡都有10個以上的攝像頭,智能座艙將成為智能駕駛視覺AI的重點應用場景。
與其手機定位一樣,虹軟的智能汽車走軟硬一體解決方案,力圖做車載視覺一站式解決方案的供應商。
從招股書看,截至2018年底,虹軟科技的「汽車等loT產品」的業務收入僅367.95萬元,占比不足1%。
與多數視覺企業加裝雷射雷達等技術不同,虹軟的的自動駕駛解決方案完全基於視覺層面,且核心聚焦在車內智能。
虹軟科技的智能駕駛視覺解決方案,包括車內安全駕駛預警、駕駛員身份識別、車內安全輔助、輔助駕駛預警、自動泊車等眾多解決方案。
2019年3月,虹軟入股開易(北京)科技,後者主營業務包括主動安全智能終端(ADAS+DMS+人臉識別)、SDK軟體服務以及硬體整體解決方案。
2019年,虹軟在科創板上市。
虹軟表示,其在計算機視覺領域積累深厚,融合其暗光高反差拍攝、防抖等影像視頻增強算法技術,即使在車內光線不佳、人臉角度多變、車輛晃動等特殊情況下,也能夠很好地完成車輛周圍環境監測和車內人員監測等功能。
上市後,虹軟大力布局智能汽車及其他 IoT 智能設備領域,目前成效初現。
據虹軟表示,智能汽車板塊2019年開始真正量產。
數據顯示,2020年,智能駕駛視覺解決方案業務增長較快,實現營業收入6592.99萬元,同比增長310.61%。
據悉,虹軟智能駕駛相關產品包括DMS(駕駛員識別系統)、ADAS(高級駕駛輔助系統)、BSD(盲區檢測系統)、OMS(乘客識別系統)、Interact(視覺互動系統)、Authenticate(生物認證)、AVM(3D環景監視系統)、AR HUD(AR抬頭顯示)和智能後備箱等各類以核心算法為基礎的相關軟體解決方案。
高工智能汽車研究院數據顯示,DMS(駕駛員識別系統)的算法業務是其智能汽車業務的主要收入來源。
虹軟今年透露,其智能駕駛業務已實現37+7個前裝車型定點開發(37款量產車型定點,7款車型預研),以提供純算法為主,公司直接與Tier1或整車廠簽約,涉及多家國內主流車企(含造車新勢力)及部分合資車企。
格靈深瞳:最早入局,協同成長
成立於2013年,格林深瞳是最早的一批AI視覺公司,也是最早一批投入自動駕駛的AI視覺公司。
當年,格靈深瞳聯合英特爾研究院院長吳甘沙、國家智能車未來挑戰賽冠軍團隊負責人姜岩等一同創辦了一家專注於自動駕駛領域的公司――馭勢科技。
2016年,馭勢科技在北京誕生,格靈深瞳作為投資方入股馭勢科技。
過去五年,馭勢科技在洶湧潮水中奮力前行。
2017年1月的CES,馭勢科技向世界推出了無人駕駛概念車「城市移動包廂」,該車型成為了全球第三款獲得紅點設計大獎的無人車。
同年,這家公司分別在4月和6月,於白雲機場、杭州來福士率先展開面向普通公眾的無人駕駛商業化運營。
今年1月21日,香港國際國際機場宣布,由馭勢科技與香港國際機場管理局共同研發的無人駕駛物流車將替代人力駕駛拖車,承擔往返機場和海天客運碼頭的行李運輸任務,意味著其在機場的運用已逐步上量。
在過去的一年中,馭勢科技與長安民生物流、一汽物流、巴斯夫(BASF)等數十家企業建立了商業合作。
據透露,在國內某豪華品牌車型上,馭勢科技提供的軟體算法也已前裝量產,並幫助該自主品牌率先推出 L3 級自動駕駛功能。去年馭勢科技交付了數百套「AI駕駛員」,實現年度業績同比增長150%。
前不久,馭勢科技宣布完成累計超10億元人民幣的新一輪融資,在這場融資中馭勢科技獲得了國家資本的參投。
馭勢科技在無人物流埋頭苦幹,潛心鑽研,其成績是在無人物流領域的業務布局幾乎占到了國內市場的70%。
2016年誕生至今,馭勢科技經歷萬千辛酸,在密如繁星的棋子中探索出一條最優解法,以機場定式,在精進自我的路上捨命狂奔。
而格林深瞳的自動駕駛之路,也隨著馭勢科技越走越遠。
曠視:立足AI視覺,做車載全套解決方案
2018年11月,曠視曾公開展示過車載AI視覺解決方案。
彼時的曠視,其解決方案基於車載系統和駕駛過程的人臉解鎖、帳戶切換、駕駛員識別、多模態交互等功能為主,並收取相應軟體使用費和服務費。
「人臉解鎖」可通過車外的攝像頭捕捉駕駛員人臉信息並進行身份的識別與確認,實現人臉解鎖車門、臨時授權人臉解鎖車門;
通過車內的攝像頭實現刷臉啟動發動機、保險箱等,「帳戶切換」功能可通過人臉識別無感知精準識別駕駛員身份,配合車載智能系統,快速調整用戶預設的車輛各項個性化配置(座椅位置、反光鏡角度、空調溫度、音樂、燈光、導航等)。
「駕駛員識別系統」可通過車內攝像頭,實時查看駕駛員駕駛狀態和行為,在駕駛員出現疲勞駕駛或分心駕駛跡象時觸發預警,保障行車安全。
曠視曾表示,其與蔚來汽車實現了未來在智能汽車應用上的深度合作,真正的無人駕駛商用較遠,曠視聚焦對人類駕駛員的理解和輔助。
的盧深視:基於3D視覺相機,為產業賦能
的盧深視在智能汽車領域的角色,更多是與第三方合作的方式。
作為三維視覺領域的佼佼者,的盧深視在高精度深度感知成像、三維實時高精度重建、三維跟蹤識別及感知等技術方向上深耕多年。
上月,的盧深視出席了2021全球自動駕駛高峰論壇,並展示了其最新3D CV相機及其應用。
的盧深視兩款自研3D CV相機,其在5米範圍誤差小於1mm,指標超越國際3D相機巨頭,量產良率達99%以上。
基於前端低功耗嵌入式平台,兩款相機均可實現非接觸式精準識別,基於結構光原理,更可還原人臉高精度3D細節信息,通過人臉立體尺寸信息精準辨識人員身份,同時對於二維和三維攻擊識別正確率高達99.99%。
多提一句,安全性上,可達金融級別。
據悉,除了智能汽車領域,兩款相機也在智能家居、金融支付、智慧交通等領域展開布局。
智能駕駛:AI視覺第二春
AI視覺眾企入局智能駕駛賽道,並非跑題創作。
其一,布局智能駕駛,是戰略向外牽引使然。
自計算機視覺出走實驗室樊籠,AI安防、自動駕駛便拿到一大波投資人的「S卡」。
當年AI落地之時,安防提供了絕佳的土壤,AI公司在此實現技術與產業的交融。
期間,AI與安防彼此成就:
安防向世界輸送的海大宇等驕子,幾乎主導了全球安防市場話語權,行業極速擴容,向城市各個領域蔓延。
AI獨角獸們也從安防起家,並逐漸走向千行百業,邁向全域。
左邊是AI安防成主要營收來源,右邊是AI安防逐漸占領一席之地。擺在入局者眼前的,是如何保持縱向持續增長的必答題。
擺脫路徑依賴,尋找AI安防之外的市場,已是當務之急。
如果說,過去五年,AI視覺公司的路徑是「通用AI SDK 重定製集成項目實施」的話,那麼未來五年,他們可嘗試「非標領域的標準市場 形成標準化產品 低成本規模化複製」的路子。
非標領域的標準市場在哪?自動駕駛、醫療、晶片赫然在列。
縱觀AI市場,目光所及賽道幾近全員虧損,掘金志認為,與高成本人力無關,因為虧損在放大;與硬體儲備也無關,因為可以OEM。
核心在於:AI安防未能標準化,項目需求又無窮多。
那就去標準化市場?有人問。
標準化市場可以一夜之間把價格做到無窮低,但高額運營支出非AI企業所能承受。
標準化市場上不去,定製化市場下不來,AI公司的突破口在哪?答案是:非標準化市場裡找到標準化路子。
賽道上,自動駕駛正是明顯的非標領域的標準市場。與AI安防共通的是,智能駕駛初創企業也依賴資本輸入。
但前者場景碎片化、項目定製化,產品標準化之路漫漫;後者以智能汽車為載體,技術上軟體定義、人機協同一旦成型,會一招吃遍天下鮮。
眼下,不少智能駕駛新勢力已實現產品量產,並獲得一定規模的現金流。
對於一眾搶灘的各路豪傑,AI視覺的入場似乎有些遲。
但智能汽車賽道正熱、格局未定,智能汽車產業鏈長、細分領域繁雜,此時入場的AI視覺,你可以說它入場稍晚,但不能說它機遇不在。
其二,自動駕駛或是計算機視覺技術應用必登之高峰。
近幾年,機器學習持續深入,計算機視覺應用亦有了飛速進展。
千山萬水跨越的人臉識別小山,是AI最成功,也最基礎的一環。
真正的AI,是貫穿感知-決策-執行的長鏈條,這一點在自動駕駛上體現得尤為極致。
感知層,通過各類硬體傳感器捕捉車輛的位置信息以及外部環境信息;
決策層的「大腦」,基於感知層輸入的信息作環境建模,從而形成對全局的理解並作出決策判斷,再向車輛發出執行的信號指令;
最後的執行層,將決策層的信號轉換為汽車的動作行為。
自動駕駛技術是人工智慧、高性能晶片、通信技術、傳感器技術、車輛控制技術、大數據技術等多領域技術的結合體,落地難度之大,各路AI無不動容。
計算機視覺應用場景萬千,自動駕駛無疑是極具挑戰性、最具想像力的一條。
越是長在懸崖之巔的花,越讓人著迷。
一直以來,在環境感知環節,存在AI視覺與雷射雷達技術路徑之爭。
不管何種路徑更優,已經在視頻物聯領域經歷過殘酷驗證,AI技術儲備上,AI視覺企業們也已攢下不少經驗。
狼多肉少,能吃幾成飽?
「自動駕駛是很低級的行業嗎?所有人都想來分一杯羹。」
這調侃入局者們聽了,大抵會覺得分外委屈。
大多數困在第一道門檻,錢。
「沒有200億不要造車」的聲量振聾發聵,造車明星蔚來也曾資金一度跌入谷底。
雖說AI視覺公司除了大華的零跑汽車外,其他參與者目前都專注於智能駕駛硬體和系統,但這也是個昂貴的行當。
不少企業本身依靠資本輸血,是否有更多資金和精力參與自動駕駛廝殺,是他們需要思考的問題。
行業壁壘不容小覷。
汽車產業發展百餘年才形成了一套嚴謹而完整的生產流程和制度,乃至於衍生出了一套基於安全的工業文明,不是後來者們在短短的幾年時間裡就能夠顛覆的。
作為智能汽車的核心體現,自動駕駛技術遠未達到成熟的程度;車艙內的智能化體驗也還有豐富的想像空間。
換言之,如果跨界選手想要在智能汽車的世界裡找到自己的一席之地,不僅要高度重視安全這一話題,還要擁有強大的軟體能力。
但在前一輪前沿傳統主機廠以及蔚來、小鵬、理想等新造車勢力的人才軍備賽過後,新入局的玩家要如何吸納更多的專業人才?又如何權衡來自世界各地的人才的意見和建議,從而做出最終決策?
與此同時,智能汽車的研發不是一件只要懂軟體就能夠做成功的事情。
隨著電動化、智能化大潮的到來,造車的門檻看似降低了不少,但在這一過程中遇到的內因外因的難題,可能遠比想像中的要多。
行業資源尚需積累。
相比AI安防、智慧城市等領域,AI視覺跨界者在智能汽車領域品牌影響力和渠道資源不足,短期內,造血盈利能力較低。
而且,AI視覺企業布局智能駕駛時間不一,技術雖有共性但終究有別,相較於大多數垂直企業,尚有諸多不足。
故可見,過去幾年,即使AI視覺巨頭,步伐也較為謹慎,大多圍繞艙內智能、ADAS市場。
如果說巨頭們跨界,自帶熱搜體質,AI視覺企業跨界的光彩,多少暗淡了些。
前者身家優渥,拿著頂流體驗卡入場,高屋建瓴,後者更多是以小舟,涉鯨波。
當然,隨著技術日進一桿,資源聚沙成塔,營收逐年增長,他們將投入包括但不限於研發、營銷、資本等層面,難保這一葉扁舟,哪天出其不意成為可遠航的重磅郵輪。
莫道桑榆晚
眾多跨界玩家湧入智能汽車,激發了新的生機。
無論從何種角度來看,智能汽車的市場都蘊藏著無限機遇。
這個市場需要鲶魚的存在。
在新時代的風潮之下,我們固然期待看到不斷有實力強勁的新玩家們入局,留下中國智能汽車史上濃墨重彩的一筆。
我們也殷切地希望,這是一片能夠承載百花齊放,充滿新的生機和活力的沃土,而不是拔苗助長的投機者的港灣。
憑藉先發優勢,不少入局者或已暫列行業前位,但隨著各方力量的持續加碼,後來居上也並非不無可能。
保持警惕,時刻成長。
資料來源:https://www.chinahot.org/science/83632.html?fbclid=IwAR2Mm9ZU17srF7sCywqUPw-hmRAyGN_sN9XnL0_Q6mE4bUYwUpgGNX3wHps
戰略人力資源管理 定義 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
汽車軟體深度報告:汽車軟體產業鏈及未來趨勢分析
北京新浪網 10-01 20:00
來源:未來智庫
關鍵結論
電動智能趨勢下,汽車逐步由機械驅動向軟體驅動過渡。近年 SDV(軟體定義汽車)概念逐步被行業認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電 動化帶來的汽車電子構架革新,汽車硬體體系將逐漸趨於一致,軟體成為定義 汽車的關鍵,行業更具想像空間。即造車壁壘已經由從前的上萬個零部件拼合 能力演變成將上億行代碼組合運行的能力。本文通過對汽車軟體行業的系統性 梳理,幫助讀者把握行業成長中的投資機會。
我們提出零部件賽道三維篩選框架,基於起點(單車價值量)-持續時間(產品生 命周期)-斜率(產品升級速度)三維體系評價細分零部件的市場空間,軟體平均單車價值量由傳統車的 200 美元,提升至 2025 年新能源汽車的 0.23 萬美元,進 一步至 2025 年新能源汽車的 1.8 萬美元。未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間,57%的增量來自於 ADAS 及 AD 軟體。
軟體如何定義汽車價值?百年汽車工業面臨由機械機器向電子產品過渡的新變 局。汽車「駕駛感」及車機 APP 化的功能實現發生在我們看不到的隱秘角落— —上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。
汽車軟體成為未來汽車構架重要組成部分。而整車電子電氣構架提供的硬體、 操作系統實現的管理功能、基礎軟體平台構架實現的抽象化為 SDV 不可或缺的 三大關鍵部分,軟硬體的分離(研發分離、功能發佈分離)成為實現 SDV 基礎。
發展史與整車廠戰略。汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發 動機控制演算法→1980 年代中央計算單元創新→1990 年代信息娛樂系統創新→ 2000 年代安全系統→2010 年代開始向全新汽車電子構架及軟體系統演變。不 同於以前依靠多個 ECU 由部件供應商主導的無獨立軟體產品概念時代,主機廠 愈發需具備軟體的管理能力及核心軟體設計能力。整車廠中特斯拉引領車載軟 件行業最高技術,大眾重金重塑軟體架構,整車廠關乎開發周期、賦予附加值、 構架實現、軟體變現模式以及操作系統切入等問題上仍未進行標準化定義,卻 為影響行業發展的關鍵所在。
產業鏈機遇。新科技、軟體公司湧入帶動供應鏈管理的扁平化、邊界模糊化, 帶動供應鏈生態體系變革。供應模式上,預計 Tier1 與整車廠之間將採取兩種合作方式,其一,整車廠主導軟體,Tier1 負責硬體生產;其二,整車廠定義軟 件框架規範標準,Tier1 供應符合標準的相關軟體。盈利模式上,偏向製造業邏 輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業穩態階段,往 介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由於迭代周期快 且行業特性帶來的標準化程度低,賦予汽車新盈利模式。現階段特斯拉三大付 費模式打開車企軟體變現想像空間,開發基礎平台收許可費、供應功能模塊按 Royalty 收費及定製化的二次開發均為未來軟體供應商主流打法。
推演的 5 大未來趨勢。汽車終將成為搭載「差異化元素」的通用化平台。一方 面,ECU 功能模塊里循環迭代的代碼驅動汽車執行動作反饋;另一方面,車載 娛樂信息系統 APP 化吸引第三方開發者入場。海量數據將在車內流轉,關於賦 能域控制器、定位車機系統的各項軟體性能升級,包括功能中心化、乙太網應 用、整車 OTA 升級、信息交互上雲及深層次的信息安全防禦等,或將帶來汽車 軟體一系列發展機遇。
SDV 新階段:軟體如何定義汽車價值
百年汽車工業面臨由機械機器向電子產品過渡的新變局。跨入駕駛室,安靜的 啟動、柔中帶剛的加速、平穩過渡的剎車等為代表的汽車「駕駛感」逐步由機 械驅動向軟體驅動過渡,這一套功能的實現發生在我們看不到的隱秘角落—— 上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計算單元, 與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應響應指令。近年來,SDV(Software Define Vehicles,即軟體定義汽車)概念逐步被整車 廠認知,根源在於「汽車如何體現差異化」問題的變遷,隨著電動化帶來的汽 車電子構架革新,汽車硬體體系將逐漸趨於一致,整車廠很難在硬體上打造差 異化,此時軟體成為定義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件 拼合能力演變成將上億行代碼組合運行的能力。
汽車軟體為未來汽車構架重要組成部分
汽車軟體與硬體體系發生分化。近幾十年隨汽車構架升級、性能與用戶操作感 需求逐年提升,汽車軟硬體數量爆發,並愈發複雜化。在硬體方面,電控單元 數量迅速增長,於 2010 年面臨增速放緩的拐點(主要受整車成本與控制器數 量平衡的影響),2025 年隨行業集中式電子電氣架構趨勢持續推進,電控單元 邁向集成化從而控制器數量將較為平穩。在軟體方面,各大主機廠軟體功能體 系越做越大,其中「功能函數」作為軟體體系中的最小單元,其單車數量持續 增大,控制器內部的功能函數複雜度提升,疊加智能座艙新增的應用型軟體需 求,軟體重要性愈發凸顯。2010 年(增速放緩的硬體數量 VS. 急劇攀升的軟 件數量)與 2025 年(硬體產業成型 VS.軟體加速迭代塑造汽車差異性)為汽車 軟硬體發展中兩個重要的分水嶺。
汽車複雜的運作需軟硬體結合進行。無論是駕駛艙對汽車電子功能的調用,抑 或汽車與駕駛員和環境互動,均可抽化為軟硬體密切配合的模型,即駕駛員的 需求與汽車功能反應之間存在著複雜的控制鏈條:駕駛員通過機械硬體或部分 虛擬按鈕輸入期望(例如通過車載按鈕、踏板等輸入型機械硬體給出期望)→ 駕駛員動作轉換為電子信號傳入電控單元→執行器控制控制對象達到駕駛員的 需求→感測器向電控系統持續反饋控制達成的具體情況,軟體邏輯持續運算向 執行器發出指令,最終達成駕駛員的期望要求。以剎車輔助駕駛為例,在駕駛 員剎車信號不足或過慢的情況下,內置的一套軟體邏輯將被激活,讓制動系統 自動做出減速相應。在電控單元中快速進行的一次次軟體迭代循環,為汽車正 常運作的基石。
SDV 研發工具鏈仍以 V 流程為主。汽車研發系統過程能拆解為軟體、硬體、執 行器及感測器 4 大部分。與傳統車相同,V 模型為車企主流的開發流程,從產 品設計、子系統設計、控制器驗證及系統驗證等階段均有相對應的工具鏈進行 支撐,涵蓋從系統到軟體以及集成后的一系列測試等內容。SDV 模式下對工具 鏈的應用具部分變化:一方面,硬體愈發通用化,研發會集中在作為功能集群 的 ECU 開發上;另一方面,車的各種功能實現盡量靠軟體實現。
Step 1:產品設計階段。此階段核心為分析和拆解需求。由消費者的需求、車 型安全及性能的剛性需求以及法律法規需求定義出軟體的基礎構架,以及定義 出各大功能模塊。
Step 2:子系統設計階段。步驟為由系統構架需求定義軟硬體構架設計。關乎 軟體系統部分在這一步雛形初顯,能將技術問題具體化,例如定義軟體能實現 的功能、軟體功能模塊的分離、如何跟對應的控制器配合等。
Step 3:控制器驗證階段。完成硬軟體及控制器集成,代碼成型并迭代測試。
Step 4:系統驗證階段。測試軟硬體在整車上的裝載使用情況。
SDV不可或缺的三大關鍵部分——電子電氣架構、操作系統、軟體平台
整車電子電氣構架為硬體基礎。汽車電子電氣架構(Electronic and Electrical Architecture,文中簡稱 EEA)最初由德爾福公司提出,以博世經典的五域分類 拆分整車為動力域(安全)、底盤域(車輛運動)、座艙域/智能信息域(娛樂信 息)、自動駕駛域(輔助駕駛)和車身域(車身電子)等 5 個子系統。後續演變 成車企所定義的一套整合方式,可形象看作人體結構中的骨架部分,後續需要 「器官」、「血液」和「神經」進行填充。具體到汽車上來說,EEA 把汽車中的 各類感測器、ECU(電子控制單元)、線束拓撲和電子電氣分配系統完美地整合 在一起,完成運算、動力和能量的分配,實現整車的各項智能化功能。博世曾 經將汽車電子電氣架構劃分為三個大階段:傳統分散式電子電氣架構-域控制器 電子電氣架構-集中式電子電氣架構:
(1)傳統分散式的電子電氣架構:主要用在 L0-L2 級別車型,此時車輛主要由 硬體定義,採用分散式的控制單元,專用感測器、專用 ECU 及演算法,資源協同 性不高,有一定程度的浪費。產業鏈分工上,車型架構由整車廠定義,實現核 心功能的 ECU 及其軟體開發由 Tier 1 完成。
(2)域控制器電子電氣架構:從 L3 級別開始,通過域控制器的整合,分散的 車輛硬體之間可以實現信息互聯互通和資源共享,軟體可升級,硬體和感測器 可以更換和進行功能擴展。屬於過渡形態,ECU 仍承擔大部分功能實現,整車 廠將參與部分域控制器的開發。
(3)集中式電子電氣架構:以特斯拉 Model 3 領銜開發的集中式電子電氣架構 基本達到了車輛終極理想——也就是車載電腦級別的中央控制架構。此時集成 化趨勢將消減大部分 ECU,主機廠將逐漸主導原本屬於 Tier 1 參與的軟體部分 (預計以直接開發模式或定義規範標準后讓供應商參與),其目標是設計簡單的 軟體插件和實現物理層變化的本地化。
操作系統實現管理功能。車載操作系統(Car-OS)承擔著管理車載電腦硬體與 軟體資源的程序的角色。20 世紀 90 年代伊始,汽車上基於微控制晶元的嵌入 式電子產品的應運興起,需加入相關的軟體架構以實現分層化,即汽車電子產 品均需要搭載嵌入式操作系統。從產品品類上,汽車電子產品可歸納為兩類, 一是以儀錶,娛樂音響、導航系統為代表的車載娛樂信息系統;二是主管車輛 運動和安全防護的電控裝置。兩者對比而言,電控系統更強調安全性和穩定性, 因此應用於電控單元 ECU 的嵌入式操作系統標準更為嚴格。未來操作系統發展 面臨兩大趨勢,一是以 OSEK、AUTOSAR 為典型代表的操作系統標準聯盟將 定義統一的技術規範;二是智能網聯趨勢下數據融合度提升,由於各個部件的 安全標準等級不一從而整車上存在多種操作系統的運用,通常引入虛擬機管理 (可提供同時運行多個獨立操作系統的環境),如在智能座艙 ECU 中同時運行 Android(車載電子操作系統)和 QNX(電控操作系統)。
基礎軟體平台構架是實現抽象化的關鍵所在。從定義上,軟體架構為軟體系統 定義了一個高級抽象(軟體表達行為、屬性、相互作用、集成方式及約束均在 此架構上體現)。而 SDV 核心內涵是能夠通過軟體作用,動態地改變構架網路 節點之間的聯結或分離狀態,從而定義汽車不同的功能組成。基礎軟體平台需 具備三方面要求:一是可靠性,能保證汽車功能實現的實時和安全;二是通用 性,適用於不同車型和不同的操作系統上;三是網構架節點易於更換聯結方式。AUTOSAR 是全球各大整車廠、供應商聯合擬定開放式標準化的軟體架構,其 使得不同結構的電子控制單元的介面特徵標準化,從而軟體具更優的可擴展性 及可移植性,降低重複性工作,縮短開發周期。
汽車軟硬體分離為 SDV 基礎
軟硬體的分離涵蓋研發分離、功能發佈分離兩方面。軟硬體分離為實現 SDV 基 礎,電動化趨勢簡化造車流程,未來汽車硬體的研發、製造更偏向於流水線過 程,而軟體發展逐步具互聯網的快速迭代趨勢傾向。汽車軟硬體分離概念由此 而生,其包含兩方面內容,一方面,由於開發周期(汽車硬體 5-7 年的開發周 期 vs. 軟體 2-3 年的開發周期)及技術領域(偏向製造業 vs.偏向互聯網)的 差別,汽車軟硬體在開發上、供應上逐漸分開。另一方面,軟體的功能發佈可 以與車型完成分離,新軟體不僅適用於新車,仍可快速發佈到已量產車型上, 增強車型硬體的使用長尾期。
軟硬體分離在功能升級及工藝裝配上具優勢。基於軟硬體分離的新構架體系在 車型功能升級及製造模式上發生變化。功能升級上,新的擴充功能由軟體定義 通過雲端直接升級,無需再在硬體層面進行驗證;工藝製造上,與軟體分離后 的電子電氣構架不同於現階段「八爪魚」式的複雜構造,更易於自動化裝配。
當前車企實現更新的方式——硬體冗餘,後續依靠更新升級。
(1)硬體預置:傳統汽車定價由硬體及性能決定。而 SDV 模式下,相同硬體 的車型通過不同的軟體配置決定車與車之間不同的功能與體驗。車企在車型設 計之初需提前定義軟硬體,SOP 時將具備擴展功能的冗餘硬體預裝,後續將通 過付費型軟體升級或者功能開放回收成本。以特斯拉的 AutoPilot 為例,冗餘的 預設硬體將通過後期持續的軟體升級調動功能,為新創收模式。
(2)性能預置:性能預置分為兩個方面,控制器算力預留,為更多的軟體功能 和演算法預留空間。隨智能駕駛趨勢,車載算力大幅提升,由於無法預估後續所 需算力的極限,通常在實際情況中會預留算力空間。性能預留,通常在各性能 硬體上做事先預留,以應付如加速性能提升,續航里程提升,圖像的清晰度提 升,音響效果提升等升級事項。例如 2018 年 6 月,美國權威雜誌《消費者報 告》發現, Model3 剎車距離比皮卡福特 F-150 要長。ElonMusk 接受了《消 費者報告》的批評並承諾通過 OTA 儘快解決此問題。此後在不到一周時間, 特斯拉通過一次 OTA 升級解決了該個問題,《消費者報告》重新測試后發現, 升級后的 Model3 剎車距離縮短了 5.8 米。
追溯發展史:汽車軟體的前世
汽車軟體隨產業技術升級持續迭代:1970 年代的簡單發動機控制演算法(軟體嵌 入應用模式)→1980 年代中央計算單元創新(顯示車輛基本信息)→1990 年 代信息娛樂系統創新(GPS、自適應巡航控制出現)→2000 年代安全系統(出 現高級駕駛員輔助駕駛概念)→2010 年代開始向全新汽車電子構架及軟體系統 演變(電子化和軟體化,出現無人駕駛概念)。
1980 年代之前,汽車僅搭載車燈、啟動機、火花塞等簡易電子設備,並未運用 任何軟體部分。整車電子設備通信及電能供給依靠銅導線傳輸。部分豪華車裝 置僅由收音機為核心部件的車載娛樂系統。
1970 年代,發動機系統具備演算法功能。出現點火系統、電子燃油噴射等裝置, 軟體直接嵌入應用使用,軟體之間無關聯具獨立性。
1980 年代隨 IT 技術起步,電子電氣化革命在傳統機械部件上進行創新。油耗 及行駛距離等信息可在車內做電子化顯示,搭載軟體的電控單元開始出現,如 防抱死系統 ABS、車輛穩定系統 ESP、電子變速箱等電子系統誕生,新功能由 嵌入式軟體的演算法控制,CAN 及 LIN 匯流排解決不同控制器之間的通信問題。
1990 年代,信息娛樂系統持續創新,軟體成為汽車重要部分。汽車軟體構架愈 發分散,出現 GPS 及自適應巡航控制等較高階的電子組件及軟體。同時,不同 控制器間持續延長的通信匯流排成為車企後續進行成本管控的重要一環。
2000 年代,安全系統推出,軟體開始主導汽車創新。「高級輔助駕駛概念」在 此階段興起,例如駕駛員未及時反應的障礙物可以系統運算下汽車自發停車規 避。此時的軟體系統更為高階,行業引入 AUTOSAR 標準軟體構架。車型方面, 電子化特徵明顯,賓士 S 級轎車車型電控單元超 80 個,通信匯流排近 2000 條。
2010 年開始,汽車電動化帶來電子電氣構架、汽車軟體新變局。智能駕駛、車 聯網概念引入,造車新勢力、互聯網企業等多玩家參與進造車環節,以特斯拉 為代表的整車廠重新定義軟體系統,新創 OTA 新升級模式。
產業鏈機遇:SDV重塑市場格局
新科技、軟體公司的湧入帶動了供應鏈管理的扁平化、邊界模糊化,推動產業 競爭要素髮生本質變化,帶動供應鏈生態體系變革。在傳統封閉式供應鏈的汽 車製造商在整條供應鏈中只負責一個環節,主要擔任汽車研發製造的角色。而 在新生態體系中,汽車軟硬體分離重塑產業格局,主機廠、供應商以及互聯網 企業均參與進汽車新生態體系,從汽車全生命周期覆蓋整個產業鏈條。
供應模式轉變,主機廠、供應商及互聯網企業入局
SDV 軟體開發模式下,不同於以前依靠多個 ECU 由部件供應商主導的無獨立 軟體產品概念時代,主機廠愈發需具備軟體的管理能力及核心軟體設計能力, 並引入供應商及互聯網企業參與此環節。在軟體領域,預計未來 Tier1 與整車 廠之間將採取兩種合作方式:
其一,整車廠主導整車軟體部分,Tier1 負責硬體生產。在傳統車企巨頭入場燃 油車領域 100 多年的歷史里,造車流水線仍以機械製造為主,Tier1 以分擔主機 廠重資產角色存在,通常與整車廠車型生產周期形成相應配套。而在智能化時 代,軟體主要以輕資產模式運轉,出於掌握核心技術考量通常為主機廠所主導。其二,整車廠定義軟體框架規範標準,Tier1 供應符合此標準的相關軟體。瞬息 萬變的技術導致車企研發容錯率下降。尤其對新入場的造車勢力而言,若在前 1~2 款車連續失敗,大概率將面臨淘汰。因此對部分在技術儲備、研發及資金 實力較弱的主機廠而言,可在其定義軟體標準後由 Tier1 進行對應的開發配套。
盈利模式轉換,將逐漸由硬體逐漸向軟體傾斜
硬體發展具天花板效應,軟體持續賦予車型新附加值。以經過 15 年發展的手機 產業鏈為例,硬體體系隨處理器性能持續提升、攝像頭像素及攝像頭個數持續 增加、屏幕材質與大小升級,其產業增速趨緩,硬體盈利模式逐漸固化。而隨 蘋果 iPhone 產品橫空出世定義軟體附加值新模式,小米做低手機硬體利潤並將 其定位於功能載體,至此軟體與服務成為手機產業鏈盈利模式的重要來源。對 標至汽車,偏向造業模式的傳統車具較固定的盈利模式,從而車企具較穩定的 利潤率,而目前在汽車電子電氣化架構趨勢下,軟體有多樣性應用的空間,無 論硬體抑或軟體體系均包含升級或新生環節,盈利模式尚未定型。而長遠來看, 偏向製造業邏輯的大部分汽車硬體由於堆橋數量將受到限制,終將會進入產業 穩態階段,往介面及功能上的標準化發展,維持較穩定的利潤率水平;軟體由 於迭代周期快且行業特性帶來的標準化程度低,賦予汽車新盈利模式。
特斯拉已構築初階車企軟體盈利模式。矽谷出身的特斯拉已證實一條軟體大規 模變現的可行性路徑,分為 FSD 付費、軟體應用商城及訂閱服務三種模式:
(1)FSD 付費模式:特斯拉車型在售出后標配 Autopilot 輔助駕駛功能,而實 現自動泊車、智能召喚的 FSD 全自動駕駛功能需付費使用。FSD 單價並未固 定,過去一年內特斯拉 FSD 售價經過三次提價(國外 8000 美元,國內 6.4 萬 元),成為特斯拉利潤的重要來源。以 2019 年 36.7 萬輛的交付量計算(30 萬 輛 Model3,6.7 萬輛 ModelS/X),假定 35%的 FSD 裝載率,6500 美元的 ASP, 則軟體收入近 8.3 億美元(其毛利率大概率高於 80%)。
(2)軟體應用商城:類似手機應用商城,可即時購買性能升級軟體包(包括輔 助駕駛功能、FSD 及各類性能升級包),通過 OTA 進行升級。
(3)訂閱服務:2019Q4 推出定價 9.9 美元/月的車聯網高級連接服務,包括流 媒體、卡拉 OK、影院模式等功能。2020Q2,特斯拉宣布計劃在年底推出定價 100 美元/月的 FSD 套件訂閱服務,為 FSD 的使用提供另一選擇。
對於第三方汽車軟體供應商,盈利模式仍不明晰,參考手機產業模式及目前行 業發展情況,預計其未來有望採用以下 3 種主流盈利模式:
(1)受主機廠委託,開發基礎平台並收取許可費用。
(2)供應功能模塊按汽車出貨量 Royalty收費(按銷售量和單價一定比例分成)。
(3)基於車企平台為其做定製化的二次開發,並收取費用。
市場空間:未來十年軟體市場復合增速為 9%,2030 年 500 億美元空間
軟體市場進入快速擴張期。包括系統軟體和應用軟體在內的軟體系統將在智能 化趨勢中,由低基數實現快速擴張,據麥肯錫預計,軟體在 D 級車整車價值中 所佔的比例有望在 2030 年達到 30%,將成為未來汽車行業最重要的領域。
市場規模方面:電動智能化趨勢下硬體發展周期領先於軟體,增量市場彈性小 於軟體。據麥肯錫,2020-2030 年汽車軟體和 E / E 架構市場預計復合年增長 7%, 從目前的 2380 億美元增長至 2030 年的 4690 億美元。拆分來看,2020-2030 年軟體市場規模(操作系統、中間件及功能軟體)復合增速為 9%(由 2020 年 的 200 億美元,增長至 2025 年的 370 億美元,進一步增長至 2030 年的 500 億美元)。2020-2030 年動力系統市場規模復合增速為 15%,主要受動力源更 迭拉動。在硬體方面,ECU/DCU、感測器以及其他電子元件的復合增速分別為 5%、8%及 3%。軟體的應用帶動汽車集成及驗證環節革新,2020-2030 年集成 及驗證市場規模復合增速為 10%。
單車價值量方面:汽車軟硬體實現分離后兩者的發展模式將出現分化。其中硬 件體系的價值量隨模塊化、集成化發展,在規模化降本過程中其單車價值量增 長將較為平緩或略下降態勢;而軟體體系迭代速度快,在其對附加值模式的持 續探索下,價值量將持續上行。據麥肯錫預計,汽車中軟體單車價值量增速最 大,純電動車型將由 2025 年的 0.23 萬美元增長 7倍至 2030 年的 1.82 萬美元。同期 ECU/DCU、感測器、動力系統(除電池)及其他電子器件增速分別為 37%、 27%、-7%、5%。此外,在豪華車及主打智能化車型上,軟體的價值量佔比及絕對值將處較高水平。
汽車結構方面:全球汽車軟體與硬體內容結構正發生著重大變化,軟體驅動逐 漸成為主導。據麥肯錫預測,2016年軟體驅動佔比從 2010年的 7%增長到 10%, 預計 2030 年軟體驅動的佔比將達到 30%,屆時硬體驅動佔比僅為 41%。
軟體內容方面:應用型軟體為汽車軟體發展主力,ADAS 及 AD 軟體為主要增 量。據麥肯錫預測,2020-2030 年一體化軟體、驗證型軟體及功能性軟體市場 規模復合增速分別為 9%、10%、10%,其中功能性型軟體佔據汽車軟體半壁江 山(結構上佔比 6 成)。2020-2030 年按軟體功能劃分的市場規模中,最大增量 為 ADAS 及 AD 軟體,佔市場規模增量的 57%;信息娛樂、安全及聯網相關軟 件次之,占 20%;操作系統和中間件、車身和動力系統相關軟體、動力總成和 底盤相關軟體分別佔據 10%、10%、2%。
整車廠戰略思路:軟體為必爭之地
在汽車構架三步走過程中——傳統分散式電子電氣架構-域控制器電子電氣架 構-集中式電子電氣架構,主機廠將逐漸主導原本由 Tier 1 包攬的定製軟體部分, 軟硬體進行拆分發包的趨勢近年來愈發明顯。車企和互聯網軟體企業紛紛入局, 特斯拉引領車載軟體行業最高技術,大眾計劃緊跟,組建 5 千名軟體工程師開 發旗下所有車型統一的操作系統「vw.OS」,汽車屬性已然將逐漸由代步工具轉換 為移動的第三空間(例如未來的娛樂、辦公場所)。現階段整車廠與 Tier 1 的合 作模式仍在探索中,關乎開發周期、賦予附加值、構架實現、軟體變現模式以 及操作系統切入等問題上仍未進行標準化定義,卻為影響行業發展的關鍵所在。
特斯拉在軟體層面最大亮點是OTA 升級模式
特斯拉創整車 OTA 升級先河。其升級主要在兩個方面:一方面,將軟體升級發 送到車輛內的車載通訊單元,更新車載信息娛樂系統內的地圖和應用程序以及 其他車機類軟體。例如升級車機的運算速度、屏幕操作流暢度,運行高畫質游 戲以及增強可視化效果等,屬於駕駛艙內「看得見」的升級。另一方面,以直 接將軟體增補程序傳送至有關的電子控制單元(ECU),為 Autopilot 持續引入 及優化新功能。例如提升時速、修復駕駛漏洞等。軟硬體分離開發、硬體性能 冗餘的設計思路是實現 OTA 的必要條件,隨法規放開、演算法逐漸完善,特斯拉 以 OTA 升級軟體模式逐步解鎖新運用功能。此外,特斯拉顛覆車載軟體盈利模 式,以 6.4 萬元的 FSD 選裝軟體包定價、2000 美元的「 Acceleration Boost」 動力性能加速升級包獨創軟體付費的商業模式。
集中式電子電氣架構提供 OTA 基礎。特斯拉的整車 OTA 升級需要其超前的汽 車電子電氣架構做配套配合,傳統車企分散式電子電氣架構中 ECU 數量龐大, 單個 ECU RAM 內存容量有限,同時供應商的底層代碼和嵌入軟體差別較大, 難以完成整車功能的統一更新。而特斯拉採用集中式的電子電氣架構,分為 CCM(中央計算模塊,整合ADAS 及 IVI 域功能)、BCM LH(左車身控制模塊)、 BCM RH(右車身控制模塊)三個部分,2015 款的 Model S 大約有 15 個 ECU, 此後發佈的 Model 3 則直接通過 Hardware3.0 和三個車身控制器執行來控制行 駛、轉向和停止等功能,集中的架構和高算力的控制模塊支撐了特斯拉整車 OTA 升級。目前特斯拉已經可以通過 OTA 的方式實現改善車輛的底盤、信息娛樂、 電池續航、ADAS 乃至自動駕駛等多項功能,讓車的功能迭代更加靈活和便捷, 最終變成一台可以不斷進化的智能終端。
OTA 升級過程需數據網路配合,其安全性尤為重要。特斯拉 OTA 升級即指將程序從主機廠伺服器更新到指定 ECU,主要步驟為:車輛與伺服器通過蜂窩網 絡進行安全連接,將待更新的固件傳輸至車輛遠程信息處理系統及 OTA Manager,OTA Manager 將固件分發至需更新的 ECU 並管理更新過程,更新 完畢後向伺服器發送確認信息。整個 OTA 升級過程面臨安全考驗,騰訊科恩實 驗室曾實現對特斯拉的無物理接觸遠程攻擊,並將漏洞情況報告給特斯拉以做 修復。OTA 模式的信息安全(信息包加密及隔離)及功能安全(車輛狀態信息 傳輸)需得到足夠保障。
特斯拉 OTA 依然屬於行業標杆,傳統車企追趕特斯拉在研發 OTA 過程中仍面 臨困境。具先發優勢的特斯拉在 OTA 對動力和底盤系統有效升級層面、用戶體 驗、系統成熟和穩定性方面均處於行業領先地位,引領傳統車企和造車新勢力 跟隨布局,但仍面臨較多困難,體現在三個方面:其一,需投入較大的人力、 物力、財力,考驗主機廠研發實力;其二,OTA 打破固有的經銷商提供增值服 務的模式,利潤蛋糕重新切分具一定阻力;其三,OTA 安全性和穩定性上要求 較高,主機廠需理解部分互聯網領域技術。
大眾重塑軟體架構,推行 vw.OS 規劃
曾囿於軟體問題車型延遲交付。在特斯拉軟體技術快速迭代壓力下,大眾加緊 開發基礎架構,或因為開發過於倉促等因素,曾多次發生軟體問題,如新一代 純電動汽車 ID.3 因為軟體開發延遲造成交付時間推遲,新款高爾夫也曾因為倉 促上馬新技術(全數字座艙)於車輛中發現軟體問題而臨時停售。
大眾已著手構建軟體架構體系。為抗衡特斯拉及科技巨頭等新勢力的布局,大 眾愈發重視汽車軟體開發業務。2020 年 1 月 1 日起,大眾集團所有軟體開發工 作被集中至獨立新部門——Car.Software(2019 年 6 月份成立)。Car.Software 分為「互聯汽車和設備平台」「智能車身和駕駛艙」「自動駕駛」「車輛運動和能源」以 及「數字業務和出行服務」五個業務單元,其所有功能都將用於開發 vw.OS 車機 系統。一系列車型軟體問題出現后,寶馬製造工程高級副總裁 Dirk Hilgenberg 加入成為 Car.Software 負責人。此外大眾也對智能駕駛研發體系進行重組,如 拆分 L4 智能駕駛研發部分、合併各部門自動輔助駕駛研發。
大眾軟體計劃的內在驅動力來源於兩個方面:
其一:汽車軟體代碼愈發複雜。大眾曾做過統計,汽車軟體的行代碼遠大於其 他應用終端(汽車軟體 1 億行代碼 VS. Facebook 8 千萬行代碼 VS. PC 電腦 4 千行代碼 VS. 飛機 2.5 千萬行代碼 VS. 谷歌瀏覽器 1 千萬行代碼),是智能 手機的 10 倍。2020 年整車代碼量有望超 2 億行,達 L5 級智能駕駛代碼量有 望超 10 億行。
其二:汽車成為複雜的聯網設備,軟體將扮演重要角色。在大眾傳統車型上僅 需約 70 個 ECU,功能相對較為分散。而在未來的集成化計算單元體系下,軟 件的重要性將愈發凸顯,與 ECU 配合定義汽車功能,涵蓋操作系統、基礎軟體 以及其他應用軟體的車載軟體大眾均會自主開發。
大眾對研發投入、人員安排及軟體化目標做出規劃:
投入方面,大眾集團將在未來三到五年內投入 90 億美元(約合人民幣 630 億 元)資金進行軟體開發。員工方面,不同於製造環節的裁員情況,數字化部門 員工由 5000 名再次擴編至 1 萬人。軟體化目標方面,內部研發軟體佔比由不 足 10%提升到 60%以上,同時提出「8 合 1 目標」(將現有的 8 個電子平台整 合為一個平台)。2025 年前,所有新車型將使用 vw.OS 操作系統和定製的雲服 務(大眾與微軟合作),軟體在汽車創新中佔據 90%份額。
汽車軟體的未來推演
若考慮對汽車開發的終極假想,汽車最終會成為搭載「差異化元素」的通用化 平台。以目前視角,差異化元素涵蓋智能座艙(人與車互動的生態系統,包括 包括全液晶儀錶、車聯網、車載信息娛樂系統 IVI、ADAS、HUD、AR、AI、全 息、氛圍燈、智能座椅等方面)及智能駕駛(L1~L5 級智能駕駛等級)領域。而差異化元素主要由車型全新的電子電氣架構和軟體兩方面定義,一方面,ECU 里的功能模塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面, 車載娛樂系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉, 其深層次的安全防禦(檢測和防禦網路攻擊)愈發重要。經過產業趨勢推演, 提出以下 5 大汽車軟體趨勢預判。
趨勢 1.往車輛集中式電子電氣架構發展,功能中心化
集中式電子電氣架構為終極構架體系。以域控制器為代表產品的跨域集中式電 子電氣架構再往後走,就是集成化程度更高的車輛集中式電子電氣架構—— Vehicle computer and zone concept(車載電腦),終極階段為 Vehicle cloud computing(車雲計算)。未來車輛通過用高性能的中央計算單元取代現在常用 的分散式計算的架構,將實現「軟體定義車輛」的終極目標。再此過程 ECU 的整合過程持續提升,應用程序完全從硬體中抽象出來,控制單元概念最終被 智能節點計算網路接棒。
趨勢2.更高傳輸性能的乙太網作為主幹網路承擔信息交換任務
乙太網作為車內通信網路大勢所趨。隨車內數據傳輸總量及對傳輸速度要求持 續提升,以及在跨行業的標準協議需求驅動下,支撐更多應用場景、更高速的 乙太網有望取代 CAN(主要用於車載控制數據傳輸,最大帶寬 1MB/s)、LIN(低 成本通用串列匯流排,主要用於車門、天窗及座椅控制)、Most(主要用於發數據 包)等傳統汽車車內通信網路成為車內通信網路。在對同樣的 ECU 的軟體進行 更新時,CAN 模式下的傳輸時間是乙太網的 30 倍。因此,乙太網的運用趨勢 得到主流整車廠(如寶馬、通用等)及半導體公司(如博通、恩智浦等)認可, 均推出符合乙太網的應用元件。未來趨勢上,乙太網並非能一蹴而就完全替代 CAN、LIN,預計多種通信模式將在較長一段時間內共存——CAN、LIN 用於傳 感器和執行器等封閉低級網路間的數據傳輸;乙太網(取代 MOST 等技術)用 於域控制器及子部件間的信息交換。
趨勢3.OTA 空中升級模式普及
OTA 由特斯拉引領,向全行業普及。由特斯拉最先推行的 OTA 升級功能模塊 能持續修復汽車軟體缺陷、解決部分故障、解鎖或引入新功能以滿足用戶需求, 成為汽車軟體發展的主流趨勢。按照升級對象的不同,OTA 可分為 FOTA(硬 件在線升級)、SOTA(軟體在線升級)兩個大類,其中 FOTA 主要針對基礎硬 件和汽車底層安全相關功能的升級需求,例如剎車系統、制動系統及 BMS 等;SOTA 主要對座艙娛樂系統進行升級。對 ECU 而言,其內部為備份軟體準備了 額外區域空間,以備當前運行程序出現故障或升級中發生斷錯誤時自動滾回備 份軟體系統,防止車輛出現安全事故。
趨勢4.汽車在雲端交換信息
更為靈活的雲服務是 SDV 載體。從早期的機械時代過渡到目前的硬體時代,在 進一步進化至未來的軟體時代,汽車的功能實現方式持續演變,隨著客戶的個 性化定製需求日益增加,加之雲計算對智能、靈活和自動化的天然要求,由「軟 件定義」來操控硬體資源成為更合適的解決方案,未來大部分汽車功能在雲端 運行,為車企轉型提供聯接使能、數據使能、生態使能和演進使能。因此,在 雲計算的計算、存儲和網路等各方面的基礎設施上,均呈現出從軟硬體捆綁, 到硬體+閉源軟體,再到白盒硬體+開源軟體的演進趨勢。而雲服務也成為 AI、 智能汽車、大數據等新興科技實現商業化落地的載體(例如特斯拉在雲服務載 體上進行 OTA 升級)。近年來雲服務市場實現爆髮式增長,而車載環節尚處於 發展初期,後續增量空間大。
趨勢5.信息安全領域需深層次防禦
汽車電子的運用及智能網聯化趨勢推進車載信息安全要求提升。汽車脫離孤立 單元后,隨之而來的是攻擊面的新增,一方面車輛聯網后其數據面臨被盜取、 泄露風險,另一方面電控系統普及后存在轉向、剎車等關鍵功能被外部控制的 可能性(例如破解車機、T-Box、網管后,向 CAN 發送惡意指令)。即接入汽車控制終端的 APP、網路系統、ECU 代碼均可能成為新攻擊向量。雲(車聯網 平台)-管(車聯網基礎設施)-端(車載智能及聯網設備)均存在信息安全問 題,將造成車輛功能性安全隱患:
(1)雲端與管端:接送關鍵數據的中央互聯網關直接連接至車企後台,部分第 三方公司被允許數據訪問。目前網聯實現通常會通過 APP 實現應用層功能(例 如解鎖車門、調用空調功能等),此時存在手機端與雲端的通信過程,且應用程 序供應商能直接訪問開放的相關數據介面。通過雲端和對外通信管端能對車機 端直接進行攻擊。
(2)車機端:當功能系統被授權時,黑客能對CAN匯流排發送相關指令控制ECU。騰訊道恩實驗室曾對特斯拉 Model S 進行過無物理破解實驗,以 Wifi 熱點接入 向車載娛樂系統植入軟體取得車機許可權,在破解網關后能控制其多個電控單元。
為抵禦外部攻擊需建立深層次的安全防禦系統,嚴控與功能安全及數據連接。汽車的防護措施隨交互信息增多其力度持續提升。車企安全團隊通常基於雲-管 -端對症建立安全防禦系統以應對外部攻擊:
(1)雲端:車載終端是汽車安全架構的核心,主要注意 T-BOX(用於車端和 外界通信)和 OBD(用於將汽車外部設備連接到 CAN 匯流排)兩大塊的信息防 護。實時進行入侵檢測,防止 DDos 攻擊。
(2)管端:汽車在未來將頻繁接入和退出網路節點,存在被篡改信息的風險。通常需要對通訊過程及傳輸數據進行加密,採用專門的 APN 接入網路。
(3)車機端:加強安全固件驗簽及防 root 機制,管理介面並建立監控體系。此外,可在車輛功能模塊上單設安全晶元對數控進行校驗。
部分第三方供應商能參與至信息安全環節。汽車安全防禦對於以特斯拉、蔚來、 小鵬等為代表的有互聯網基因的造車新勢力來說,擁有一定先天的優勢。包括 特斯拉在成立之初便組建了來自谷歌、微軟等互聯網企業的 40 人的網路安全專 家,小鵬和蔚來與阿里、騰訊等互聯網廠商進行深度合作,未來華為等供應商 是此領域的預備軍。目前網路安全系統仍缺乏標準的信息安全方案,原本的汽 車軟硬體供應商難以以統一標準滿足不同整車廠的信息安全要求,並且在測試 階段很難直接接入車企平台進行網路安全試驗。預計未來行業將有提供信息安 全方案、網路安全模塊以及某一特定領域防禦系統的第三方軟體供應商出現。
投資建議和推薦標的
百年汽車工業面臨由機械機器向電子產品過渡的新變局,在我們看不到的隱秘 角落——上百的電子控制單元循環執行軟體代碼功能塊,通過高性能的中央計 算單元,與硬體體繫結合以解析駕駛員需求,邏輯運算後向機械部件發送相應 響應指令。近年來,SDV(軟體定義汽車)概念逐步被整車廠認知,根源在於 「汽車如何體現差異化」問題的變遷,硬體體系將逐漸趨於一致,軟體成為定 義汽車的關鍵,即造車壁壘已經由從前的上萬個零部件拼合能力演變成將上億 行代碼組合運行的能力。
SDV 趨勢下汽車軟硬體分離重塑市場格局,盈利模式由硬體向持續賦予附加值 的軟體傾斜。主機廠愈發需具備軟體的管理能力及核心軟體設計能力,並引入 供應商及互聯網企業參與此環節,開發基礎平台並收取許可費用、供應功能模 塊按汽車出貨量 Royalty 收費及基於車企平台做定製化的二次開發均為未來主 流的軟體供應商盈利模式。預計 2030 年 500 億美元市場空間,復合增速 9%。
汽車最終會成為搭載「差異化元素」的通用化平台。一方面,ECU 里的功能模 塊持續循環迭代的代碼驅動汽車執行最適宜的動作反饋;另一方面,車載娛樂 信息系統越發 APP 化吸引較多第三方開發者入場。海量數據在車內流轉,其深 層次的安全防禦(檢測和防禦網路攻擊)愈發重要。關於賦能域控制器、定位 車機系統的各項軟體性能升級,包括車內乙太網應用、整車 OTA 升級、信息交 互上雲及深層次的信息安全防禦等,或將帶來一系列發展機遇。
資料來源:https://m.news.sina.com.tw/article/20201001/36497492.html?fbclid=IwAR1zWwTMiTHwfLyqZ7Qx698UjYwI3v0c-hs3gXdy560Rf5BgAS4Ts4QLbOQ
戰略人力資源管理 定義 在 戰略人力資源管理 - 中文百科知識 的相關結果
戰略人力資源管理 ,是為了實現組織長期目標,以戰略為導向,對人力資源進行有效開發、合理配置、充分利用和科學管理的制度、程式和方法的總和。它貫穿於人力資源的整個 ... ... <看更多>
戰略人力資源管理 定義 在 戰略性人力資源管理_百度百科 的相關結果
戰略 性人力資源管理是組織為達到戰略目標,系統地對人力資源各種部署和活動進行計劃和管理的模式,是組織戰略不可或缺的有機組成部分,是人力資源管理最重要組成部分之 ... ... <看更多>
戰略人力資源管理 定義 在 战略人力资源管理 - MBA智库百科 的相關結果
战略人力资源管理 (Strategic Human Resources Management,简称SHRM)战略人力资源管理产生于20世纪80年代。1981年,Devanna、Fombrum和Tichy在《人力资源管理:一个 ... ... <看更多>