創新工場和BCG諮詢合作的「+AI改造者」系列:創新工場投資的Insilico Medicine,看AI新藥研發平臺如何賦能傳統藥企,一起進行“AI+生命科學”的顛覆式創新!
改造者系列:AI醫藥的下一站是長壽 -- 本文来自BCG微信公眾號,經授權轉載。
近期,創新工場聯合BCG波士頓咨詢旗下亨德森智庫,推出「AI融合產業:『改造者』如何促進AI普惠」系列研究。人工智能在中國大陸有著明確的落地應用場景,大量的AI企業活躍於這些垂直場景中,我們定義這些企業為「改造者」。「改造者」通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸。
作為擅於趨勢前瞻的TechVC,創新工場長期看好AI領域,深入佈局,至今已經投出了7只AI獨角獸。在系列研究中,我們采訪了數家創新系AI企業,通過這些「改造者」的視角,探究傳統企業擁抱AI的範式與路徑。
創新工場投資的英矽智能(Insilico Medicine)是一家由人工智能驅動的全球領先生物技術公司,通過發明和迭代人工智能藥物研發平臺,變革創新藥物和療法的發現方式。
英矽智能的AI藥物研發平臺已經證明了自己的能力:在今年2月和8月,半年的時間內,先後公佈了兩種臨床前候選藥物,分別用於治療特發性肺纖維化和腎臟纖維化。
在采訪中,英矽智能創始人兼首席執行官Alex Zhavoronkov博士表示,AI醫藥企業的下一個重要問題將是如何更好地理解生物學和跨物種生物學,長壽業或者抗衰老技術將會是未來的方向。以下:
■系列導讀
本系列由BCG亨德森智庫與創新工場董事長兼首席執行官李開復博士帶領的創新工場團隊共同推出,圍繞「AI融合產業:『改造者』1如何促進AI普惠」的課題,我們致力於探究傳統企業在應用AI過程中的關鍵要素與合作夥伴,以及傳統企業擁抱AI的範式與路徑。
AI製藥領域於2014年左右興起,在2018—2020年間全面爆發。AI能夠快速識別大量樣本中的客觀規律,加速尋找和測試潛在靶點的過程。「有了AI,我們50個人可以做到的事情,比得上一個典型的製藥公司5000人所做的事情」,英矽智能創始人Alex Zhavoronkov在「未來呼嘯而來」一書中如是分享。2
1 「改造者」 通過傳授其AI技術和垂直行業理解,極大地打破了傳統企業應用AI的瓶頸,充當產業中傳統企業應用AI的橋樑。「改造者」包括AI企業與成功轉型AI的傳統企業。
2「未來呼嘯而來」,彼得·戴曼迪斯(Peter H.Diamandis)和史蒂芬·科特勒(Steven Kotler)著。
■本期受訪嘉賓:Alex Zhavoronkov
英矽智能(Insilico Medicine)是一家由人工智能驅動的全球領先生物技術公司,通過發明和迭代人工智能藥物研發平臺,變革創新藥物和療法的發現方式,加速研發進程,為癌症、纖維化、抗感染、免疫和抗衰老等未被滿足的臨床治療需求提供創新的藥物和療法方案。
Alex Zhavoronkov是英矽智能的創始人兼首席執行官。他擁有皇后大學學士學位,約翰·霍普金斯大學生物技術碩士學位,以及莫斯科國立大學物理和數學博士學位。
■對談實錄
Q1 英矽智能原來在美國創立,後來為什麼選擇遷至中國?
Alex:中國構建了一套完善的體系和土壤,吸引創業企業、大型企業紛紛入駐。中國大陸多樣化的投資者,包括傳統藥企、科技巨頭、PE/VC等各類投資者,能將最優質的AI人才、CRO、藥企融合在一起。投資者能為初創企業提供資質牌照、幫助招聘、企業管理和宣傳等等。英矽還與許多學校開展了合作研究,擁有豐富的內部研發管線。中國完整的生態夥伴體系使得像我們這樣的企業能夠迅速擴大研發規模,甚至與大藥廠競爭。
Q2 英矽智能和輝瑞、安斯泰來、楊森製藥等諸多藥企都有合作,在和大型藥企合作的過程中有什麼心得或者經驗?
Alex:創新型的AI生物技術公司按照創立時間可以分為三大類:2014年之前成立、2014年—2015年左右成立、最近5年成立。2014年之前成立的企業通常不運用深度學習(deep learning),或者不具備向藥企提供解決方案所需的行業知識。2014—2015年間成立的企業則創立的正是時候,生成式對抗網絡(Generative Adversarial Network)出現,AI製藥開始興起。同時,許多藥企缺乏AI的專業知識和AI團隊,如果想要獲取AI方面的知識和技能,就必須與初創企業合作。作為交換,那時候的藥企也通常願意向初創企業提供資料和各類資源。英矽智能很幸運,創立時間(2014)正處於大藥企對外部合作最為開放和寬鬆的時期。而最近幾年成立的企業就沒那麼幸運了,很多藥企已經開始自建AI團隊、自研AI應用,只有具備非常特定細分領域AI技術的初創企業才有可能成功撬動藥企,與之建立合作。
然而據我的觀察,儘管許多大藥企都建有自己的AI部門和數據科學家團隊,但他們並沒有足夠強的AI能力——他們往往缺乏具備足夠AI知識的團隊。以生物醫藥方面的論文發表為例,在2014—2019年間,英矽智能發佈了上百篇AI相關的論文,然而發表AI論文數量最多的藥企阿斯利康則只有65篇,位列其次的諾華有54篇。
藥企往往也不知道從何處開始應用AI,而這正是AI初創公司能夠創造價值的地方。但是,在AI初創公司開始接觸藥企和銷售方案之前,首先要充分理解大型藥企錯綜複雜的組織架構和部門分工,針對不同部門銷售定制化的模塊,而非從一開始就銷售整體性、綜合性的解決方案。這是因為藥企內部通常很難有一個部門能夠處理所有的模塊,部門之間的協同往往沒有那麼強。因此,AI初創公司在提供解決方案的時候也要靈活地劃分模塊,對症下藥,英矽智能通常一次只銷售一個模塊。
儘管銷售是模塊化的,AI初創公司需要具備端到端、全鏈路的解決方案。英矽根據不同的研發週期,設計了三大AI平臺——新藥靶點發現平臺、分子生成和設計平臺、臨床試驗預測平臺。據我們瞭解,中國還沒有任何一家同行,同時擁有生成生物學和生成化學兩大AI平臺,能把靶點發現和小分子化合物生成有機結合在一起的公司很少。此外,英矽智能的AI系統可以用軟件形式呈現,藥企可以自行操作,用自己的數據運算測試。這些都為我們創造了差異化的優勢。
最後,對於藥企而言,如果想要應用綜合的AI解決方案,需要有整體性的戰略為引領。咨詢公司可以充當整合各部門組織、統籌整體戰略的角色,AI企業可以選擇與之合作。
Q3 在您看來,未來AI醫藥領域的發展趨勢是什麼?
Alex:在未來,最重要的不是AI技術,而是如何將AI和行業特定的實驗數據或模型結合。現在市場上已經充滿了各種各樣的技術企業,他們在不斷精進演算法模型和數據。未來的競技不會是關乎演算法或者算力,而是新的商業模式或者應用AI的新方式。
AI初創公司需要積累足夠的行業專識,理解藥企的需求,學習藥企的經驗,並向藥企證明自己提供的模塊能夠在真實的商業環境下應用,並且模塊之間能夠很好地兼容,能融入業務流程,且符合監管要求。比如機器學習加速了藥物識別,但還有很多步驟和流程並不能被加速或跨越:實驗論文不能被跨越,你依然需要向藥物監管部門提供大量實驗數據和模型來證明研究的有效性;實驗中的生物過程不能被加速,你依然需要等待生物體自然的新陳代謝和細胞活動,你也不可能直接從大鼠實驗跨越到人類實驗。而這些都涉及到更細分的新技術問題。
所以,對於AI醫藥企業而言,下一個重要的問題將是如何能夠更好地理解生物學?如何理解跨物種生物學?正因如此,我判斷長壽業或者抗衰老技術將會是未來的方向,即如何運用AI來監督和追蹤生命體在漫長時間裡無數細微的實時變化,來創建數字孿生(digital twin),進行跨物種比較、跨疾病模型比較。我相信AI是説明我們更好地認識生命體的最佳工具。
■要點回顧
1、中國的資本環境天然地聚集了垂直產業領域的優質企業,幫助AI初創公司,即「改造者」,迅速汲取經驗、擴大規模,加速行業創新與賦能。
2、在與垂直行業企業合作時,「改造者」既要有端到端的解決方案,也要有靈活、敏捷的銷售和服務模式。端到端、全鏈路的方案有助於「改造者」更靈活地根據傳統企業的需求組合方案,能夠擴大服務範圍和客群,提升「改造者」的競爭優勢。
3、未來最重要的不是AI技術,而是如何將AI與行業特定的實驗數據或模型結合。限制因素並不是演算法或者算力,而是新的商業模式或者應用AI的方式來實現行業定制化。
深度學習 步驟 在 自強基金會 Facebook 的最讚貼文
⭐大數據資料分析速成班第01期⭐開始報名啦‼️‼️
💲💲政府補助80-100%課程費用💲💲
全程線上遠距授課🖥🧑💻方便又安心💗💗
另贈價值近3,500元書籍材料📚
學會大數據分析,兩個月就可以👌👌
15-29歲青年參訓可月領學習獎勵金8,000元🤩🤩
🙋♀️🙋你應該參訓的理由:
👉課程規劃循序漸進,完整掌握大數據分析步驟與流程。
👉四大專業能力:資料技術、分析技能、領域專業、溝通視覺化。
👉以Python語言為基礎,進階可學習網路爬蟲、機器學習、深度學習等AI尖端技術。
👉關鍵技術學習、專題實作、就業輔導一條龍,打造專屬於您的求職就業競爭力。
🖥線上遠距甄試:9/10(五)13 : 30~17 : 30,須自備視訊鏡頭及麥克風
📆課程期間:9/16~11/11,9:00–18:00,共314小時(週六會排課)
☎️課程諮詢:03-562-3116#3319,黃先生
立即報名去 ➡️➡️https://reurl.cc/pgERQZ
#大數據資料分析速成班
#勞動部補助80-100%課程費用
#通過iCAP課程品質認證
#大數據分析師
#就業轉職不是夢
#全程線上遠距授課
#贈價值近3500元書籍材料
#15至29歲青年月領學習獎勵金8000元
深度學習 步驟 在 台灣物聯網實驗室 IOT Labs Facebook 的精選貼文
DeepMind AI 修練成精了,已經學會「發脾氣」?
作者 雷鋒網 | 發布日期 2021 年 08 月 12 日 8:00 |
DeepMind 又在「捏小人」了!這群小人是英國人工智慧實驗室 DeepMind 生產的 AI,不過只能在遊戲裡看到。但你可能不知道的是,DeepMind 還訓練過 AI 下象棋、玩足球、比電競,甚至提出人工生命言論。
最近這群AI,竟然能直接跳過數據訓練,在開放式任務環境自我進化。
之前Alpha Go和Alpha Star能力再強,也只能在各自擅長遊戲放大招,超出範圍立刻停擺。現在這批小人卻能在不同遊戲游刃有餘完成任務,展現超強的泛用能力。難道人工智慧治好泛用「頑疾」了?
在搶奪高地金字塔的任務,兩個不同顏色的小人能力值相當,都沒有跳躍能力,開始發脾氣亂扔東西,混亂中竟把其中一塊板子「扔」成樓梯,長驅直入,任務完成!
多次實驗發現,小人可複製方法,難道這群AI有記憶了?不僅如此,小人還學會「相對運動」──我上不去,你下來──借助板子直接把目標拉下來!甚至為了贏得比賽,多個小人學會配合,團體合作能力一直上升。
這種用虛擬遊戲自我進化的AI,僅需人為搭建任務環境,設計大量任務目標,利用加強深度學習,一步步打通關,最終成為十八般武藝精通的AI。
沒有樣本,沒有經驗,這些AI究竟如何進化,零樣本學習是否意味這些AI具備基本的「自學意識」?
社會達爾文主義訓練場
比起之前的足球場,這批AI的訓練場更像遊戲「社會」,有無數個遊戲房,每房間遊戲照競爭性、平衡性、可選性、探索難度分類。不管哪種任務,這批AI都只能從最簡單開始,一步步解鎖更複雜的遊戲,整個遊戲更像虛擬社會。
無需大數據集訓的AI,每玩一次遊戲就成長一次,與各種環境互動和「獎勵」下成長為更通用的AI,更像人工「生命」。
能讓AI自我進化的關鍵在於正確設計初始智慧和進化規則。一開始都非常簡單,所有複雜結構都是進化而來。就像嬰兒不會做大人的事,任務核心是不要超出AI自身的改進能力。
據DeepMind說法,每個AI會在4千間遊戲房玩約70萬個遊戲,並在340萬個任務經歷2千億次訓練步驟。1億次步驟約耗時30分鐘。照這訓練法,41天就能訓練出一群「成年」AI。
但AI還是不會思考
DeepMind表示「單AI可開發智慧成多目標,不僅一個目標」。AI公司Pathmind 的CEO Chris Nicholson也說「它學到的技能可舉一反三。例AI學習抓取和操縱物體,就能完成敲鎚子或鋪床任務。DeepMind正用程式設計為AI在這世界設定目標,這些AI正在學習如何掌握。」
但南加州大學計算機科學副教授Sathyanaraya Raghavachary表示,這些AI並不能定義為「生命」,尤其關於AI擁有身體感覺、時間意識及理解目標幾個結論。「即使人類也沒有完全意識到身體這件事,更不用說人工智慧了。」
他表示,活躍的身體對大腦不可或缺,大腦要放在合適的身體意識和空間位置內進化。如果AI能理解任務,何必需要2千億次模擬訓練達到最佳結果?總體而言,虛擬環境訓練的AI只是和以往AI「大同小異」。
從理論到現實的路還很長
狹義人工智慧是「複製人類行為的元素」,在計算機內執行某種任務,如分類圖像、定位照片物件、定義對象邊界等。這些系統旨在執行特定任務,而不具解決問題的一般能力。
相比之下,Deepmind使用的「通用人工智慧」有時也稱為人類等級人工智慧,因可理解上下文、潛台詞和社會線索,甚至認為可能完全超過人類。
但正如行為主義和認知主義的對抗,AI是否有解決問題的能力,並不能只考慮統計結果。善於「事後解釋」任何行為,實驗室之外還是無法「預測」哪些行動即將發生。
資料來源:https://technews.tw/2021/08/12/is-deepminds-new-reinforcement-learning-system-a-step-toward-general-ai/?fbclid=IwAR0xofCay9Ydy83BfQ_7lyEtfGvJroFfCznxiTxYIHP6HUFWpELClQPFs28
深度學習 步驟 在 InfuseAI - 一個深度學習模型的開發牽涉到許多的步驟 的推薦與評價
一個深度學習模型的開發牽涉到許多的步驟,今天我們的工程師Jack Lin 要深入淺出的教你如何使用Kubeflow 來完成深度學習模型開發、分散式訓練以及部署模型服務的典型 ... ... <看更多>
深度學習 步驟 在 深度學習與機器學習服務 - GitHub 的推薦與評價
機器學習是人工智慧的子集,其使用(的技術,例如深度學習) ,可讓電腦使用體驗來改善工作。 學習程式是以下列步驟為基礎:. 將資料送入演算法。 ... <看更多>
深度學習 步驟 在 AI CUP - 6. 建立與訓練深度學習模型 - YouTube 的推薦與評價
... <看更多>