📜 [專欄新文章] 瞭解神秘的 ZK-STARKs
✍️ Kimi Wu
📥 歡迎投稿: https://medium.com/taipei-ethereum-meetup #徵技術分享文 #使用心得 #教學文 #medium
上一篇關於 zkSNARK扯到太多數學式,導致很難入手,這次介紹 STARK 會盡量減少數學式,以原理的方式跟大家介紹。
STARK 被視為新一代的 SNARK,除了速度較快之外,最重要的是有以下好處1. 不需要可信任的設置(trusted setup),以及
2. 抗量子攻擊
但 STARK 也沒這麼完美,STARK 的證明量(proof size)約 40–50KB,太佔空間,相較於 SNARK 只有288 bytes,明顯大上幾個級距。此外,這篇論文發佈約兩年的時間,就密碼學的領域來說,還需要時間的驗證。
STARK 的 S 除了簡潔(Succinct)也代表了擴展性(Scalable),而T代表了透明性(Transparency),擴展性很好理解,透明性指的是利用了公開透明的算法,可以不需要有可信任的設置來存放秘密參數。
SNARK 跟 STARK 都是基於多項式驗證的零知識技術。差別在於,如何隱藏資訊、如何簡潔地驗證跟如何達到非互動性。
快轉一下 SNARK 是如何運作的。
Alice 有多項式 P(x)、Bob有秘密 s,Alice 不知道 s、Bob 不知道 P(x)的狀況下,Bob 可以驗證P(s)。藉由同態隱藏(Homomorphic Hindings)隱藏Bob的 s → H(s),藉由 QAP/Pinocchio 達到了簡潔地驗證,然後把 H(s) 放到CRS(Common Reference String),解決了非互動性。細節可以參考之前的文章 。
問題轉換
零知識的第一步,需要先把「問題」轉成可以運算的多項式去做運算。這一小節,只會說明怎麼把問題轉成多項式,至於如何轉換的細節,不會多琢磨。
問題 → 限制條件 → 多項式
在 SNRAK 跟 STARK 都是藉由高維度的多項式來作驗證。也就是若多項式為: x³ + 3x² + 3 = 0,多項式解容易被破解猜出,若多項式為 x^2000000 + x^1999999 + … 則難度會高非常多。
第一步,先把想驗證的問題,轉換成多項式。
這邊以Collatz Conjecture為例子,什麼是Collatz Conjecture呢?(每次都用Fibonacci做為例子有點無聊 XD)
1. 若數字為偶數,則除以2
2. 若數字為奇數,則乘以3再加1 (3n+1)
任何正整數,經由上述兩個規則,最終結果會為 1 。(目前尚未被證明這個猜想一定成立,但也還未找出不成立的數字)
52 -> 26 -> 13 -> 40 -> 20 -> 10 -> 5 -> 16 -> 8 -> 4 -> 2 -> 1.
把每個運算過程的結果紀錄起來,這個叫做執行軌跡(Execution Trace),如上述52 -> 26 -> … -> 1。接著我們把執行軌跡轉換成多項式(由執行軌跡轉成多項式不是這裡的重點,這裡不會贅述,細節可以參考 StarkWare的文章 )如下
https://medium.com/starkware/arithmetization-i-15c046390862
合成多項式
接著就把這四個限制條件的多項式合成為一個,這個最終的多項式就叫做合成多項式(composition polynomial),而這個合成多項式就是後面要拿來驗證的多項式。
就像一開始提的,SNARK跟STARK都是使用高維度多項式,接著,來介紹STARK是藉由哪些方式,達到零知識的交換、透明性(Transparency)跟可擴展性(Scalability)。
修改多項式維度
這一步是為了後面驗證做準備的。在驗證過程使用了一個技巧,將多項式以2的次方一直遞減為常數項(D, D/2, D/4 … 1),大幅減低了驗證的複雜度。因此,需要先將多項式修改為2^n維度
假設上述的每個限制多項式(不是合成多項式喔)為Cj(x),維度為 Dj,D >= Dj 且 D 等於2^n,為了達到 D 維度,乘上一個維度(D -Dj)的多項式,
所以最終的合成多項式,如下
其中的αj、βj是由驗證者(verifier)所提供,所以最終的多項式是由證明方(prover)跟驗證方所共同組成。
*這小節的重點是將多項式修改成D維度,覺得多項式太煩可忽略
FRI
FRI 的全名是”Fast RS IOPP”(RS = “Reed-Solomon”, IOPP = “Interactive Oracle Proofs of Proximity”)。藉由FRI可以達到簡潔地驗證多項式。在介紹FRI 之前,先來討論要怎麼證明你知道多項式 f(x) 為何?
RS 糾刪碼:
糾刪碼的概念是把原本的資料作延伸,使得部分資料即可以做驗證與可容錯。其方式是將資料組成多項式,藉由驗證多項式來驗證資料是否正確。舉例來說,有d個點可以組成 d-1 維的多項式 y = f(x),藉由驗證 f(z1) ?= y,來確定 z1是否是正確資料。
回到上面的問題,怎麼證明知道多項式?最直接的方式就是直接帶入點求解。藉由糾刪碼的方式,假設有d+1個點,根據Lagrange插值法,可以得到一個 d 維的多項式 h(x),如果如果兩個多項式在(某個範圍內)任意 d 點上都相同( f(z) = h(z), z = z1, z2…zd),即可證明我知道 f(x)。但是我們面對的是高維度的多項式,d 是1、2百萬,這樣的測試太沒效率,且不可行。FRI 解決了這個問題,驗證次數由百萬次變成數十次。
降低複雜度
假設最終的合成多項式為 f(x),藉由將原本的1元多項式改成2元多項式,以減少多項式的維度。假設 f(x) = 1744 * x^{185423},加入第二變數 y,使 y = x^{1000},所以多項式可改寫為 g(x, y) = 1744*x^{423}*y^{185}。藉由這樣的方式,從本來10萬的維度變成1千,藉由這種技巧大幅降低多項式的維度。在 FRI 目前的實做,是將維度對半降低 y = x²(f(x) = g(x, x²))。
此外,還有另一個技巧,將一個多項式拆成兩個較小的多項式,把偶數次方跟奇數次方拆開,如下:
f(x)= g(x²) + xh(x²)
假如:
f(x) = a0 + a1x + a2x² + a3x³ + a4x⁴ + a5x⁵
g(x²) = a0 + a2x² + a4x⁴, (g(x) = a0 + a2x + a4x²)
h(x²) = a1x + a3x² + a5x⁴, (h(x) = a1 + a3x + a5x² )
藉由這兩個方法,可以將高維度的多項式拆解,重複地將維度對半再對半,以此類推到常數項。而 FRI 協議在流程上包含兩階段 — 「提交」跟「查詢」。
提交階段:提交階段就如同上述過程,將多項式拆解後,由驗證者提供一亂數,組成新的多項式,再繼續對多項式拆解,一直重複。
f(x) = f0(x) = g0(x²) + x*h0(x²)
==> f1(x) = g0(x) + α0*h0(x), ← α0(驗證者提供)
==> f2(x) = g1(x) + α1*h1(x), ← α1(驗證者提供)
==> . . .
查詢階段:這個階段要驗證證明者所提交的多項式 f0(x), f1(x), f2(x), … 是否正確,這邊運用一個技巧,帶入任意數 z 及 -z(這代表在選域的時候,需滿足 L²= {x²:x ∊ L},這邊不多提)。所以可以得
f0(z) = g0(z²) + z*h0(z²)
f0(-z) = g0(z²) -z*h0(z²)
藉由兩者相加、相減,及可得g0(z²)、h0(z²),則可以計算出f1(z²),再推導出f1(x),以此類推驗證證明者傳來的多項式。
Interactive Oracle Proofs (IOPs)
藉由FRI(RS糾刪碼、IOPs),將驗證次數由數百萬降至20–30次(log2(d)),達到了簡潔地驗證。不過,我們解決了複雜度,但還有互動性!
* 與SNARK比較 :SNARK在驗證方面利用了QAP跟Pinocchio協定。
非互動性
藉由 Micali 建構(Micali construction)這個概念來解釋如何達到非互動的驗證。Micali 建構包括兩部分,PCPs(Probabilistically checkable proof)跟雜湊函數。PCPs 這是一個隨機抽樣檢查的證明系統。簡單來說,證明者產出一個大資料量的證明(long proof),經由隨機抽樣來驗證這個大資料量的證明。過程大約是這樣,證明者產出證明𝚿,而驗證者隨機確認 n 個點是否正確。
在STARK,我們希望達到:1.小的證明量,2.非互動。隨機抽樣可以讓達到小的證明量,那互動性呢? 想法很簡單,就是預先抽樣,把原本 PCPs 要做的事先做完,然後產出只有原本證明 𝚿 抽樣出的幾個區塊當作證明。但想也知道,一定不會是由證明者抽樣,因為這樣就可以作假。這裡是使用 Fiat-Shamir Heuristic 來作預先取樣。
首先,先把證明 𝚿組成 merkle tree,接著把 merkle root 做雜湊可得到一亂數 𝛒,而 𝛒 就是取樣的索引值。將利用𝛒取出來的區塊證明、區塊證明的 merkle tree 路徑跟 merkle root, 組一起,即為STARK 證明 𝛑。
到目前,只使用雜湊函數這個密碼學的輕量演算法。而雜湊函數的選擇是這個證明系統唯一的全域參數(大家都需要知道的),不像是 SNARK 有 KCA 使用的(α, β, 𝛾)等全域的秘密參數,再藉由 HH(同態隱藏)隱藏這些資訊來產生 CRS。因為證明的驗證是靠公開的雜湊函數,並不需要預先產生的秘密,因此 STARK 可以達到透明性,也不用可信任的設置。
接著,將FRI中需要互動的部分(驗證者提供 α 變數),使用上述的 PCP + Fiat-Shamir Heuristic, 即可達到非互動性。
* 與SNARK比較: SANRK 的非互動性是將所需的全域參數放到CRS中,因為全域參數是公開的,所以CRS裡的值使用了 HH 做隱藏。
MIMC
大部分證明系統,會使用算數電路來實作,此時,電路的複雜程度就關係到證明產生的速度。 STARK 的雜湊函數選用了電路複雜度較簡單的 MIMC,計算過程如下:
https://vitalik.ca/general/2018/07/21/starks_part_3.html
這樣的計算有另一個特性,就是無法平行運算,但卻又很好驗證,因此也很適合 VDF 的運算。Vitalik有一個使用 MIMIC 作為 VDF 的提案。
ps. 反向運算比正向慢百倍,所以會是反向計算,正向驗證
從上面的解釋,可以理解為什麼 STARK 不需要可信任設置,至於為什麼能抗量子?因為 SNARK 中使用了 HH 來隱藏秘密,而 HH 是依靠橢圓曲線的特性,但橢圓曲線沒有抗量子的特性(也就是可以從公鑰回推私鑰)。而STARK在整個過程中只使用了雜湊函數,而目前還沒有有效的演算法能破解雜湊函數,因此可以抵抗抗量子攻擊。
有錯誤或是不同看法,歡迎指教
參考:
StarkDEX Deep Dive: the STARK Core Engine
STARK 系列文:
STARK Math: The Journey Begins
Arithmetization I
Arithmetization II
Low Degree Testing
A Framework for Efficient STARKs
Vitalik 系列文:
STARKs, Part I: Proofs with Polynomials
STARKs, Part II: Thank Goodness It’s FRI-day
STARKs, Part 3: Into the Weeds
ZK-STARKs — Create Verifiable Trust, even against Quantum Computers
https://ethereum.stackexchange.com/questions/59145/zk-snarks-vs-zk-starks-vs-bulletproofs-updated
Originally published at http://kimiwublog.blogspot.com on November 12, 2019.
瞭解神秘的 ZK-STARKs was originally published in Taipei Ethereum Meetup on Medium, where people are continuing the conversation by highlighting and responding to this story.
👏 歡迎轉載分享鼓掌
Search