#微控制器MCU #馬達 #變頻器 #向量控制演算法 #功率因數修正FPC #可編程增益放大器PGA #開源軟體
【走入千家萬戶的馬達應用,MCU 是首腦】
搭載無刷馬達、可自動收合的智慧嬰兒車,具便利性且推動更流暢順手,但前提是:需有精確的轉矩控制,且馬達得有極高的負重承載能力。一般嬰兒車會使用 1kW 或 3kW 的變頻器;若想準確控制轉矩和速度,浮點運算單元 (FPU) 則是執行快速 PI 控制器 (比例+積分) 的最佳選擇。
可一舉驅動 LCD、LED、感測器及任何三相永磁馬達、執行向量控制演算法的微控制器 (MCU),從靜止狀態開始發揮最高轉矩完全不需感測器輔助,5V 電源設計可縮短變頻器與馬達的安裝距離,盡可能降低雜訊干擾。高速處理亦是重點,利於快速傅立葉轉換的濾波操作;而使用浮點運算單元 (FPU) 能縮減程式碼,避免源於格式轉換所導致的量化誤差,確實執行複雜的數學運算。例如,需快速計算磁通估測器的無感測器演算法、整數運算及轉換 FPU 皆能輕易完成。
「向量控制」的無感測器演算法不僅快速,且可保留大量 CPU 資源供應用程式使用。另一個例子是用一個 MCU 同時驅動至少兩個高速馬達的美容磨甲機,向量控制可限制轉矩漣波並避免馬達受到撞擊,開發套件內建自動調試演算法,只要連接馬達便能在幾分鐘內驅動兩個馬達、高速運轉,省卻以往動輒 1~2 週的微調、測試參數時間。另可編程增益放大器 (PGA) 可動態增益、靈活管理高/低轉速的馬達,主動式功率因數修正 (FPC) 可確保快速執行。
整合運算放大器——內建可調整 PGA 和比較器,更合乎成本考量;即使要同時執行兩個高壓馬達,也只需單一印刷電路板 (PCB) 便能實現。管理低速馬達也適用,由 MCU 驅動三相變頻器和超小型無刷馬達的調節胃束帶裝置是其中一項應用;晶片本身搭戴多個安全模組,可做 CRC、RAM、時脈等一致性檢查,I/O 連接埠本身也會執行許多可信度檢查。內建獨立監督功能,擁有高度引腳保護,且隨附軟體是免授權金的開源軟體,已開放給認證機構,可加速產品驗證。
最後一個例子是高速運轉三相無刷馬達、要求超快反應時間的呼吸器。向量控制演算法可確保超低雜訊、保持穩定,給予安穩的睡眠品質;一旦使用者停止呼吸,軟體能管理高速加、減速斜率,迅速做出反應。必要時,可插上霍爾感測器和編碼器,搭配特定 MOSFET 最高可驅動 40V 的外部馬達,也可外接功率級的高電壓或高電流。此應用新增數位訊號處理器 (DSP) 指令,可執行多次快速傅立葉轉換,使用多個感測器也不會產生轉矩漣波。更多資訊:https://www.renesas.com/zh-tw/support/buy/distributors.html。
演示視頻:
《瑞薩 RX23T 微控制器變頻器解決方案》
http://www.compotechasia.com/a/CTOV/2017/0827/36503.html
#瑞薩電子Renesas #RX23T #RX24T
★★【智慧應用開發論壇】(FB 不公開社團:https://www.facebook.com/groups/smart.application/) 誠邀各界擁有工程專業或實作經驗的好手參與討論,採「實名制」入社。申請加入前請至 https://goo.gl/forms/829J9rWjR3lVJ67S2 填寫基本資料,以利規劃議題方向;未留資料者恕不受理。★★
轉矩漣波 在 COMPOTECHAsia電子與電腦 - 陸克文化 Facebook 的最佳解答
#數位控制馬達驅動器 #相位電流回授 #電壓源逆變器 #轉矩漣波
#平滑響應 #速度剖面 #定子繞組 #轉子電磁諧波 #齒槽轉矩 #脈寬調變PWM #類比數位轉換器ADC
【從系統宏觀,揪出數位馬達驅動不佳的元凶!】
在所有數位馬達驅動器中,不可或缺的部分就是「相位電流回授」(phase current feedback),其測量品質與轉矩漣波 (torque ripple) 和轉矩穩定時間等系統參數直接相關。雖然系統性能與相位電流測量之間具有較強的相關性,但很難轉化為對回授系統 (feedback system) 的硬體需求。馬達驅動器或伺服系統中的電流迴路性能,會直接影響馬達的轉矩輸出;對平滑響應 (smooth response) 與準確定位、速度剖面 (speed profiles) 十分關鍵。
平滑轉矩輸出的一個核心基準是「轉矩漣波」,對於直接轉化為終端應用的準確度剖面和分割應用相當重要;響應時間和穩定時間等參數,將左右生產效率直接被「可控制頻寬」影響的自動化應用優劣。馬達驅動器中的轉矩漣波可能來自於:
1. 馬達本身,例如「定子繞組」(stator winding)、插槽配置和轉子電磁諧波的磁卡轉矩所產生的「齒槽轉矩」(cogging torque);
2. 相位電流回授系統的偏移及增益誤差;
3. 逆變器的停滯時間 (dead time),在脈寬調變 (PWM) 輸出電壓增加低頻諧波零組件的定子電性頻率,例如,諧波頻率的電流迴路干擾抑制,將影響電流迴路表現。
當一個三相位馬達藉由開關電壓源逆變器來驅動,此相位電流可視為由兩個元件所組成:一個基本元件和一個開關元件。為達控制目的,須去除開關分量,否則會影響電流控制迴路的性能。最常見的抽取平均分量技術是——取樣同步到脈寬調變週期的電流。如果脈寬調變週期的初始及中間電流為平均值、且取樣時間同步,該開關分量可被有效抑制;但若電流取樣存在時間誤差,則將發生混疊 (aliasing)、電流迴路性能會因此下降。
相位電流的基本分量通常在幾十 Hz 範圍內,而電流迴路的頻寬則以 kHz 計算;微小的時間誤差會影響控制性能似乎有悖常理。然而,僅以相位電感限制 di/dt,即使是一個微小的時間誤差都將導致明顯的電流失真。錯誤的取樣時間最常見的原因有:
★在脈寬調變和類比數位轉換器 (ADC) 之間的鏈結不足,使得在正確的時間內取樣變得不可能;
★缺乏足夠的獨立同步取樣保持電路 (可能是兩個或三個,得依被測量的相位數目決定);
★因脈寬調變時間器所產生的馬達電壓輸出相位之「閘極驅動訊號」傳輸延遲。
通常,任何能影響 di/dt 的事物都會決定錯誤取樣時間的嚴重性,但馬達轉速、負載、馬達阻抗,和直流匯流排電壓等系統參數,也會導致誤差!想要設計用於馬達控制的最佳化回授系統,必須具備系統宏觀,才能辨別誤差源以對症緩解。
延伸閱讀:
《理解馬達驅動器電流迴路非理想效應影響的系統途徑》
http://compotechasia.com/a/ji___yong/2016/1110/34017.html
(點擊內文標題即可閱讀全文)
#亞德諾ADI #磁場定向控制器驅動平台FOC
圖檔取材:pixabay.com
〔本文將於發佈次日下午轉載至 LinkedIn、Twitter 和 Google+ 公司官方專頁,歡迎關注〕:
https://www.linkedin.com/company/compotechasia
https://twitter.com/lookCOMPOTECH
https://goo.gl/YU0rHY
轉矩漣波 在 Analog Devices台灣亞德諾半導體股份有限公司 Facebook 的最佳貼文
ADI技術文章:
理解馬達驅動器電流迴路 非理想效應影響的系統途徑
在所有數位控制馬達驅動器中不可或缺的部分就是相位電流回授 (phase current feedback)。測量的品質與系統參數如轉矩 漣波(torque ripple)和轉矩穩定時間(torque settling Time)直接相關。雖然系統性能與相位電流測量之間具有較強的相關性, 但也很難轉化為對於回授系統 (feedback system)的硬體需求。本文將從系統的觀點討論如何設計用於馬達控制的最佳化 回授系統,及如何識別誤差源並討論緩解做法。
http://www.compotechasia.com/uploads/technology/…/211ADI.pdf
轉矩漣波 在 技術亮點搶先來報① 2分鐘認識直接轉矩控制 - Facebook 的推薦與評價
... 比一般#向量控制還要快的反應時間‼️ 不以電流、頻率作為主要的控制變數,直接控#馬達 轉矩 ⁉️ 這是DTC(Direct Torque Control),#直接 轉矩 控制... ... <看更多>