【專欄】陳惠萍:什麼是理想中的美好城市?從大城小鎮的永續實踐一窺究竟.....(12/23/2020 天下雜誌CSR@天下)
作者:陳惠萍
城市是人們居住、打拼的地方,「永續城市」則可被定義為滿足經濟、社會與環境共好,並且「具包容性、安全、韌性及永續特質的城市與鄉村」。你心中的理想城市是什麼樣貌?
一座美好的城市會是何種樣貌?有許多學者都提出了想像。
最早可追溯自1898年伊比尼澤.霍華(Ebenezer Howard)所提出的「田園城市」(Garden City)概念,針對英國都市問題提出一種平衡人工與自然區域比例的都市空間規畫,也開啟在城市實踐人類發展與自然共生的啟蒙思潮。
美國城市生態學者理查德.雷吉斯特(Richard Register)於1987 年出版《Ecocity Berkeley:Building Cities for a Healthy Future》一書,提出「生態城市」(Ecocity)概念,強調尋找人類與自然的平衡原則,是城市永續發展的重要標準。
生態城市可自行供應所需的能源與食物,並且降低居民的生態足跡。這樣的城市將對環境更加友善、減少污染、土地利用與全球暖化;此一概念也被視為永續城市的雛形。
近年,對於永續城市的構想藍圖還有:智慧城市、綠色城市、循環城市、韌性城市等,亦可被視為兼顧人類文明發展與環境生態共榮的城市烏托邦。
在聯合國永續發展目標下,「永續城市」則可被定義為滿足經濟、社會與環境共好,並且「具包容性、安全、韌性及永續特質的城市與鄉村」。
永續城市的探索起點:自願性地方檢視報告
為了在城市治理中導入永續發展思維,國際上有許多城市開始採用「自願性地方檢視報告」(Voluntary Local Review,VLR),透過系統性的檢驗架構強化市政發展與SDGs指標的連結,進而提出地區戰略、接軌全球永續行動。
VLR可視為在地城市與全球銜接對話的重要工具,不只幫助地方政府分享實踐SDG的本地化經驗,也可透過數據監測、系統性地檢驗成果。依據全球環境戰略研究所(Institute for Global Environmental Strategies,IGES)所發佈的《State of the Voluntary Local Reviews 2020》,我們可以看見全球各城市的自願檢視報告重點及其所回應的SDG目標。
紐約市是第一個在施政計劃中納入SDGs的城市先驅,同時也提出全球第一份VLR。
截至2020年2月,全球已有15個領先城市提出VLR,其中包含兩個台灣城市:新北市、台北市,9月時桃園市成為台灣第三個提出自願性地方檢視報告的城市。
永續城市的模樣:全球與台灣的大城小鎮故事
2018年國際氣候發展智庫(ICDI)、ICLEI東亞地區高雄環境永續發展能力訓練中心(ICLEI-KCC)和台北市電腦商業同業公會(TCA)共同發表一份「2019年全球智慧解決方案報告:城市挑戰與創新」,其中介紹了20 個城市案例,說明不同地區的城市如何透過創新解決方案回應城市永續發展的挑戰。
於此,本文希望帶領大家從大城小鎮的案例出發,更進一步窺見永續城市的可能樣貌。
(1)連結物聯網(Internet Of Things, IOT)、大數據(Big Data),成為更聰明的智慧城市:
以2019年獲得全球智慧城市獎的瑞典首都斯德哥爾摩市為例,其透過12項智慧城市解決方案「GrowSmarter Project」,解決城市人口、住房、交通及能源等基礎設施等問題,藉此推進城市永續發展。
然而,居住在最聰明的城市,人們將擁有怎樣的生活?在這本《歡迎來到世界上最聰明的城市》手冊中,呈現2040年斯德哥爾摩的城市日常,映照我們對未來城市的想像。
在這座智慧之城,除了便捷且低碳的公共運輸,還可透過密集的感測網絡確保交通一路順暢。此外,城市中的數據中心與網路服務,將可遠距提供完善的學校教育、居住/工作空間與高齡照護服務。
更饒富趣味的是,在這座網路無遠弗屆的未來城市裡,還將保留專屬的「離線區域」(Offline Zones),所有VR、臉部辨識及數據廣告等都將被屏蔽,成為這座科技喧囂的城市中能夠暫時「離線而居」的空間結界。
智慧城市結合物聯網科技不只解決各種問題,也可幫助市民參與城市管理。
例如,巴西里約熱內盧透過發起「資料群眾外包」(data crowdsourcing)計劃,鼓勵貧民區青少年,製作社區衛星(將數位相機綁在風箏上,並加上簡易配件),俯照城市街景。
此外,城市營運中心也鼓勵居民透過智慧型手機標示所遭遇的城市問題,如街道照明故障、蚊蟲孳生的垃圾堆等,不僅可減少緊急事件的通報時程,協助市民快速取得各項訊息,亦可以作為城市管理與規劃方向的基礎。
除此之外,智慧城市的發展核心更在於如何透過科技應用服務弱勢對象。以智慧城市常見的自駕車科技為例,我們可以看見其如何幫助偏鄉銀髮族、身障人士及一般民眾,共享自由、安全且便利的暖心運具,藉此紓解高齡化社會下的各種問題(例如:日漸凋零的高齡駕駛、偏鄉大眾運輸因路線成本而遭裁撤)。
日本軟銀自駕車概念影片「バスがまた、通るようになったから」:
https://youtu.be/g4f_HEplM5A
(2)以人為本,讓所有人都幸福的城市:
波蘭社會學家齊格蒙.鮑曼(Zygmunt Bauman)曾說:「當我們在思考如何讓城市變得更好的時候,你必須要把生活在其中的人都納入考量」!因此,一座幸福宜居的理想城市,也必須讓所有生活在其中的人民都能感受美好。
日本橫濱的未來城市計劃中,便以「A Community for All」為目標回應高齡化社會的各種挑戰。
過去,橫濱市曾是日本最繁華的港口城市,同時也是人口最多的城市。如今,橫濱市因為人口老化、低出生率的影響,不只讓橫濱成為嚴重高齡化城市,也導致當前城市體系運作的隱憂。
為此,橫濱市採取公私協力方式打造實現滿足各年齡需求的全民社區。其中包含:住房多樣性、智慧能源管理、環保減碳等設計。例如,依照人口統計及家庭收入設計住房區域,滿足不同居住需求。
其中,城市住房示範計劃也與電信、能源管理、保全公司合作,打造可視化及用戶友善系統,並且透過能源管理系統以優化能源供需,實現具有節能環保、循環利用且具防災功能的智慧住宅。更重要的是,在實現全民社區的願景過程中,橫濱市十分強調所有利害關係人的溝通協作,方能真正落實全齡友善的城市設計。
由此可知,以人為本的精神將是永續城市的重要核心。如同全世界最宜居的城市—丹麥哥本哈根在其政府都市計劃書中所強調:「城市是大家的,市民不論貧富、種族、階級都能平等的享受哥本哈根的城市生活」。
於此,我們也看見所有人共好的理想城市,其核心並非全然現代主義的高科技追尋,而是蘊藏於城市設計當中的民主精神,以及回應SDGs不遺落所有人的理念,才能打造出讓每一個人都幸福快樂的城市。
(3)綠色低碳,百分百再生能源的城市:
城市是人口聚居之地,高樓林立的都會叢林往往也是溫室氣體排放的重大來源。為了邁向永續發展,近年許多城市已積極承諾使用再生能源並減少碳排放。參考CDP發布的「再生能源城市地圖」可以窺見,目前全球已有超過百座城市的電力七成以上來自再生能源。
此外,百分百再生能源也成為城市永續發展的重要指標。例如,英國有80多個市鎮組成UK1oo,承諾於2050 年達到百分百再生能源。美國亦有58個城市加入環保團體的「Mayors For 100 Percent Clean Energy」計劃,宣示2035年達成100%電力來自再生能源。
地方能源革命不只在城市興起,更在鄉村城鎮展開。在德國有70多個小鎮已經實現百分百再生能源的夢想。以德國知名的能源村Wildpoldsried為例,在這個人口僅有2500人的小村莊,自1998年起即由市府結合公民參與投入發展生質能、水力、風力及太陽能等發展,如今已成為100%使用再生能源、享譽國際的綠色能源村。
人口老化凋零的農村社區,轉型綠能不只創造地方經濟,更可帶來更多就業機會、支持青年回鄉。德國綠色小鎮的故事,不僅讓我們看見再生能源發展如何結合經濟與環境共榮,此外過程中亦可落實公民參與及社區共享精神,像是2017年曾訪台的Wildpoldsried副市長君特.穆格雷(Günter Mögele)自身也參與其中。其在住家屋頂裝設太陽能,並將電力賣給當地社區市民。
在台灣,也有原鄉部落期盼轉型綠能與生態共好。2020年由台灣再生能源推動聯盟與台灣綠能公益發展協會共同發起的「點亮比亞外」部落綠能公益計劃,即是希望邀請全民一起關注台灣偏鄉部落的電力需求,用綠能點亮比亞外長老教會、支持部落能源自主。
未來這座自發自用搭配儲能設備的太陽能電廠將不只為教會節省電費支出,還可幫助提供老人共餐服務、溫暖更多獨居長者。更重要的,使用再生能源也將支持比亞外成為與自然和諧共生、守護藍腹鷴的綠色生態部落。
幸福不在他方:城市烏托邦的永續追尋
城市是全球永續戰役的關鍵節點。換言之,所有永續發展目標的實踐都是在地的(All SDGs are Local)。因此,這場從全球到台灣的城市轉型浪潮中,我們必須透過SDGs的「在地化」(Localization),方能實現更多兼顧社會、經濟與環境共好的永續城市。
然而,未來永續城市的輪廓並非固著不變的。伴隨時空流變,不同階段的城市發展也將面臨迥異的人口與環境挑戰。因此,追尋幸福的城市烏托邦或許將是一場無止盡的追尋。而在這條持續前行的道路上,我們可藉由SDGs指引方向,並且納入所有人的參與,一起走向共同想要的未來!
(本次主題「城市SDG」共分上下篇,上篇為:「城市」,是全球永續發展的關鍵戰役!;下篇為:永續城市的在地實踐:大城小鎮的故事)
完整內容請見:
https://csr.cw.com.tw/article/41792
♡
食物碳足跡七階段 在 食物鏈 Facebook 的最佳解答
#斯佩爾特全野酵麵包
#海藻糖添加
#雙線割法Double_line_coring
#Sourdough_spelt_bread_Sauerteig_Dnkelbrot_einschneinden_Brot #Trehalose_Pilzzucker_in_bread_baking
#發文: http://foodchainunme.blogspot.com/2020/08/double-line-scoring-sourdough-spelt.html#more
全文轉貼. 但是部落格上的期刊論文是可以點連結的.
因為上次在德國麵包社團po了我的雙線割法文. 但光只是解釋大家還不能完全理解. 所以這次做了這個麵包來錄影.
如果你看過之前的po文應該就可以知道我的斯佩爾特酸種包用的都是白麵粉. 但並不是最低號數的. 在我的感覺中最低號數的Dinkelmehl 630比較適合做不要太長發酵時間的麵包. 不過. 既然都要做包就要做一些沒做過的. 但是我又怕失敗. 所以從低一點水量做. 這樣在割線的時候也不用太緊張. 今天這個麵包的組成是這樣的
1. Dinkelmehl 630 100% 300 g
2. 水 68% 204 g ( 水合) + 7% 21 g( 溶鹽)
3. Trehalose 海藻糖 3 % 9 g
4. 鹽 2% 6 g
5. 野酵硬種 25 % ( 小麥高筋粉 餵養 50% 水量) 75 g
6. 炒香黑芝麻隨意
冷藏3 度後發 12 小時
你可以看到我的食材中加了海藻糖!
這個海藻糖是我之前回台灣買回來的. 過期了! 一直都不知道怎麼用. 因為當初是為了做甜點. 大家都說好. 然後我去烘焙材料行就手癢了. 買回來以後查一下. 發現它雖然是蔗糖的40%甜度. 但根本跟蔗糖一樣熱量! 衛生福利部國民健康署 海藻糖甜度較低, 對健康較好?
https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1425&pid=12948
而我本來是要做甜甜的糖. 加一樣的東西比較不甜. 但熱量居然一樣??? 我吃不下去~ 為什麼不要甜然後少吃?
於是我就放一邊了. 都沒用過.....
會對我的海藻糖又產生興趣是因為去年看了一個苗林行的影片. 他們請了橫井聰這位麵包大師來講解日清的Super King 這支麵粉. 其中提到麵粉中有加海藻酸.
臉書苗林行日清Super King 麵粉示範講習連結
這一點讓我的興趣又點燃了.
因為裡面提到的跟我實際操作的手感一樣
1. 他提到加海藻酸的用意是因為Super King 是用粉心粉. 所以操作起來會比較癱軟.(德國低號數的麵粉實際上是比較接近粉心粉的特質.) 雖然沒提到為什麼( 光是說跟加維他命C 是一樣道理不能解釋全部><)
2. 他提到很多日本麵包師傅在做天然酵母麵包時會使用Super King 甚至用到 100%( 這支麵粉被建議是混粉使用的) 是因為天然酵母麵包的特性是麵團比較往左右發展. 向上發展的膨脹比較少. 所以才會用100%
3. 其實我不知道那個海藻酸在麵粉裡的總量如何. 但他也說在法棍這個通常不用高筋粉的麵包上有時也會加入混粉. 情況是因為烤箱的狀態不穩定時. 有時是因為蒸氣製造問題或是溫度問題....
於是就激起我這次添加海藻糖的興趣了.
這個食材我應該會把它應用在之後的Panettone製作上. 因為今天這個麵包我發現保濕性及柔軟度都不錯. 當然. 我不會每一種都添加. 因為沒有必要. 如果你認為我的麵包都是加麵筋加商酵加海藻糖很多添加物才會長得美美的.... 那我應該只會聽得進去" 美美的". 其他都是你自己認為.... 我如果得靠這些" 添加物" 才能做麵包的話應該我都無法原諒我自己!
如果你有翻過野上志寬的麵包全圖解這本書, 就可以發現野上大師在他的配方中陸續都加了海藻糖. 並且也做了冷藏發酵. 這更增加我對於這包糖的使用興趣. 於是陸陸續續看了不少的實驗報告期刊論文.
有一點耐人尋味的是. 你可以看到大部分的期刊文都來自亞洲. 這是我到現在才開始用海藻糖的原因.
其實在藥界久了. 會有一種被害妄想症. 因為發展新藥不容易. 花費的成本你無法想像. 所以到了人體試驗階段時就會開始擔心會不會造成人體不好的作用而影響上市. 而在上市之後如果真的有影響. 是不是該回收也是一大考量. 於是很多藥廠會請醫生加持. 寫推崇這個藥的論文或是到處去演講. 這樣的行銷手法是很常見的.
不過. 這個糖是1994年使用至今. 好像也沒怎樣. 味精的大量生產使於1909年. 就連德國的Bakin泡打粉用得都比味精還要久..... 人體試驗應該已經夠了😂😂😂 因為這是與一般自然界存在物質相同化學式的東西. 跟藥物的無到有沒看過合成化學式是不同的.
Effect of Trehalose on Fresh Bread and Bread Staling
Effect of Trehalose on Rheological Properties of Bread Flour Dough
Effects of maltodextrin and trehalose on the physical properties of Chinese steamed bread made from frozen doughs
Management of freezing rate and trehalose concentration to improve frozen dough properties and bread quality
雖然這個是用米. 但其實是研究麵包酵母菌的論文
以不同米種為碳源,培養Saccharomyces cerevisiae之胞內海藻糖累積量及其培養液 之生理活性評估
另外. 你可能不知道之所以會這麼多麵包添加海藻糖目的其實是在於現今大量生產的麵包工業中. 對於冷凍麵團技術的鑽研. 所以在商業酵母菌上也可以做一些改良
Stress Tolerance in Doughs of Saccharomyces cerevisiae Trehalase Mutants Derived from Commercial Baker’s Yeast
還有~海藻糖也被用來做一些潛在藥物的研究
台灣有些論文:
評估海藻糖對第十七型脊髓小腦萎縮症小鼠及組織切片培養之作用
也有人做了這個論文
飼糧中添加海藻糖對白肉雞生長性能及肉質之影響
也就是說~
你不吃海藻糖但你吃雞....你說. 這個合成海藻糖最後是用甚麼形式進入你的身體去利用的呢? 😅😅😅
我們買到的便宜海藻糖是日本林原(HAYASHIBARA)株式會社,發明能使用澱粉作為海藻糖生產的技術( 其實現在很多人都在研究不影響這個專利來製造的方法. 實在太好賺) . 雖然這個 Trehalose 存在很多食材中. 但是實際上要從食材提煉出它是很難的. 也因此用澱粉合成出來的到底是不是健康? 我個人覺得其實和" 味精" 一樣! 因為都是合成. 雖然和生物中的鮮味成分化學式一樣!
也因此. 我對於這個海藻糖的看法及添加並不想大肆宣揚. 我家有味精! 但我不是每道菜都加. 事實上是因為我看很多人都買一罐一罐的醬料. 卻發現因為味精不是一個被禁止的東西. 所以你的醬料中自己幫你加味精是常有的事! 除非你不用那些東西. 否則自己買味精知道你用了多少. 那才是我的個性!
不過~ 因為烘焙酸種麵包的人中有太多對於食材的堅持. 甚至連麵粉都要給個指定才高尚. 之前分享了一個加小麥蛋白(麵筋)的食譜被一位管理員批評得體無完膚外還把我的文刪掉@@ 讓我對於我這個添加海藻糖的想法與動作變得不想去分享.
因為當初自己開始製作麵包的目的不同. 不是因為買超市麵包有很多添加物. 而是我買不到麵包. 但我們家需要麵包. 如果今天超市在我們家轉角. 我一輩子應該跟麵包扯不上關係. 但當我開始製作後就會發現這是一件很療癒的過程. 尤其是純酸種的製作... 好幾天完成一個麵包那是一種成就感. 吃麵包這件事反倒是其次了. 但我發現很多德國自己做麵包的人卻覺得自己用XXX 高級麵粉等同名牌上身是一樣的. 我知道台灣也有很多人喜歡用日本麵粉.. 但當你使用有添加的麵粉習慣之後. 就會有種沒那個麵粉怎麼辦的煩惱. 於是乎. 我到德國聽過最扯的事是聽到有人說他都從台灣運麵粉來做麵包. 因為這裡的麵粉做不出吐司@@
這只是讓人知道你不會做麵包而已啊! 有甚麼好炫耀的呢?
因為我一直都不是有機愛用者. 如果是國外的有機產品與這裡當地的非有機食品讓我選. 我應該會選這裡的. 國外運進來實在太多碳足跡. 你只是為你自己的" 奇檬子" 好. 但是為了你的fu 地球暖化就得算你一份! 而通常那種東西都會有華美的外包裝吸引你. 幫你製造一個吃了會很健康的想像... 所以又有了過度的包裝....
我無法做到完全沒有" 碳足跡" 的生活方式. 但我可以在買一個吃了會拉掉的食物上多想想. 又是題外話了....
回到這次的正題.
關於雙線割法.
個人覺得因為麵糰水量不同. 所以在割線上得要有分別. 例如水量高於75 % 第二條線的長度就一定要比第一條線來得短. 這樣第一條割線才能包得住準備入爐前正在往外擴散的麵糰. 但例如這個影片的水量其實是71% 所以可以考慮再長一點. 甚至跟第一條線一樣長. 因為麵糰抓得住
這就是我這次的成果~
當然因為用說的很難說明. 所以我做了影片
https://www.youtube.com/watch?v=KUCtEnPWC0g&lc=Ugx84cu9Z3e6O1cvQrN4AaABAg
71% 水量的麵團
這個角度應該很清楚了吧? 還有在烤箱中的表現...
但值得一提的是這個麵包的組織與外觀. 我覺得比較軟~ 而且你可看到外表亮亮的. 我很少有這種麵包書是用這樣的大麵包切這麼多頁的. 3%的海藻糖甜度大概就是1.2%糖的甜度. 恩~ 我吃不出來甜....
斯佩爾特的金黃色澤真的很美. 但因為用的是低礦物質的麵粉. 沒有上一顆斯佩爾特的香氣濃厚.
你說麵包製作是不是很有趣啊?
昨天去超市被老爺翻白眼只好放回去的土司是KAMUT ( 好吧~ 我家也有這種粉只是想吃吃人家怎麼做的).
這種穀類雖然有人說是久遠以前的穀類. 但實際上已經是有註冊的一種穀類. 我想應該也是有基改過的穀類. 反正~ 現在只要不是小麥好像大家就覺得很珍貴. 對我來說就是一種挑戰. 而且以好吃這件事來說. 非常主觀. 但我知道饅頭包子還是用小麥最好吃!
最後附上婆婆家三樓的晚上八點風景.
你找到月亮了嗎? 世界上的每個角落都有不同的人事物. 站在三樓看的風景和一樓的風景很不同. 就算你一到三樓的風景都看過. 但也只是那棟房子的角度出發.別人家的角度和你的也不一樣.
學習包容並且虛心求知是在生活中一定要有的一個態度. 今天的文是我的個人角度.
希望你喜歡!
食物碳足跡七階段 在 葛望平 Facebook 的最讚貼文
大家好,分享一篇文章,讓大家認識環保材質
由中技社與永循會發行的永續循環經濟觀念一書~循環經濟與 PLA 綠色創新產品開發
(寀呈股份有限公司 李佳燕 董事長)
(文長注意😊)
摘要
人類物質生活大幅提昇,卻是建構在大量耗用能源、剝削勞工、剷平山林、動植 物滅絕消失、環境嚴重污染、與有毒廢棄物四處流竄的基礎之上。我們不能 忽視這些作為對於地球生態系與未來世代所造成的影響。地球公民希望台灣能藉由 產業轉型,走向生態的、永續的、低碳的綠色經濟,尊重環境資源的限制,揮別過 去高污染、高耗能、高耗水、高工時的產業與生活型態。本文共分為三個部分,第 一部分從全球循環經濟的趨勢入手,第二部分探討生質材料與循環經濟,第三部分 PLA在循環經濟的運用,最終提出本文的結論。

1、 前言
為了兼顧經濟成長與環境永續,聯合國於 2009 年提出「全球綠色新政」倡議, 希望透過公共投資帶動經濟復甦、創造綠色就業機會,2011 年再度提出「綠色經濟 轉型」,建議各國政府至少要提撥 2%的 GDP 用於綠色投資,建構一個低碳社會的典 範,並成為國家與企業長期競爭力的來源,目前美國、歐盟及日本等國家已紛紛響 應,積極擴大綠色投資,加速發展循環經濟。循環經濟的理念,正是要想要改變過 去「Take-Make-Use」的線性經濟,重新建構一套「從搖籃到搖籃」的嶄新經濟模式,讓大自然裡沒有廢棄物。同樣的,我們可以把所有廢棄物和污染當作是「資源錯置」 的結果,由於經濟模式與產品設計不良,使得資源不能被充分利用和回收,才會產 生廢棄物。如果可以重新規劃原料開採、產品設計、製程、使用、回收等一系列流 程,讓資源的生命週期延長,甚至不斷循環,才能徹底解決廢棄物與污染的問題。
二、全球循環經濟的趨勢
(一)循環經濟的內涵
全球工業發展歷經工業革命至今,經濟發展的基礎往往為「線性經濟」的發展 模式,線性經濟係指在工業生產與消費系統中,資源從開採、製造、使用、最後到 廢棄,呈現從搖籃一路到墳墓的線性流動,而此一線性流動往往造成許多資源,僅 經一次性的使用後便流入廢棄端。其追溯源頭則歸因於早期全球資源蘊藏遠大於需 求量,資源供給足以負擔開發的需求量,因此經濟發展上僅針對產量提升與刺激消 費量,最終形成了線性經濟 ;相較於前者,循環經濟強調自然資源的使用與消費應 發揮最佳性的使用,換而言的便是應革新傳統的生產供應模式,並創造新型消費型 態,將過去線性工業系統,重新設計與升級,創造更高的產業價值,而在轉型循環經 濟的過程中,應檢視過去線性經濟模式所開採的資源,以利將搖籃至墳墓的概念轉 型為搖籃至搖籃。自資源有限的概念中,資源分為已確認存在、高機率、低機率及 尚未發現的地表儲備量,而其中前三者多已因線性經濟的需求進行開採,而分佈至 人類生活圈的各個角落,但未來為因應轉型循環經濟,必須將已視為廢棄的資源再 次進入源頭成為資源儲存,因此為了高效率轉型為循環經濟,現已遭開採的資源又 以資源再生分為高、中及低三者,在考量機會成本情況下,高經濟價值資源的再生 將成為未來發展循環經濟的重點。
上世紀六○年代美國經濟學家肯尼斯. 波爾丁(Kenneth Boulding)提出循環經 濟(Circular Economy)一詞,認為人類在追求經濟發展的同時,大量開採自然資源 並排放污染及廢棄物,但地球就像一艘飛行於宇宙中的太空船,當資源耗盡時終將 毀滅,唯一能使地球持續發展的方式,就是將這些汙染及廢棄物轉換成可再利用的 資源。七○年代起,環境資源已開始受世人重視,聯合國於 1972 年 6 月 5 日召開人 類環境會議,會後發表「聯合國人類環境宣言」,該宣言強調地球生產非常重要的再生資源的能力必須得到保持,而且在實際可能的情況下加以恢復或改善。以目前地 球的承載力已經超飽和的情況下,如何讓過去「開採→製造→消費→丟棄」的直線 經濟,轉變成「開採→製造→消費→再生→製造→消費→再生…」的循環經濟,以 舒緩地球的承載壓力,這是人類發展的重要課題!
基於上述背景,工業先進國家已陸續將這理念落實於政策及法規的推動,例如 美國於 1976 年頒布《環境保護與回收法》、德國於 1978 年推出全球第一個環境標 章「藍天使標章」、日本於 2000 年公布《推進形成循環型社會基本法》及一系列相 關法規等。產業界也努力開發易拆解可回收的產品,或是強調使用再生原料的產品, 例如電子產品的塑膠外殼宣告添加再生塑膠原料、運動服裝標榜使用寶特瓶再生的 環保紗、紙製產品標示採用再生紙漿等,循環經濟甚至也是近期歐美青年創業的趨 勢,例如「在地循環農場」(Local Loop Farms)。
(二)循環經濟的發展
循環經濟和線性經濟最大的不同,具有可回復性和可再生性,其特性是透過新 的設計,從一條完整價值鏈與跨不同價值鏈的系統,檢討各式各樣的經濟活動,建 立資源循環圈。循環經濟不同於傳統的「廢棄物減量」,其更強調在新面向產生變革 性的設計,以改善傳統經濟體系價值結構鏈,其層面包含技術、組織及社會面的創 新。鑒於國際環境保育意識提升,許多國家已發覺循環經濟的趨勢,並且逐步投入 資源來加速循環經濟的體現,包括英國、荷蘭、歐盟、中國、日本等主要經濟體, 並已在政府策略及產業創新出現許多新的研究成果。而循環經濟對於臺灣永續發展 產業邁向國際經濟潮流上有其發展的重要性,臺灣未來若要於此發展趨勢中,延續 並展示環保產業及經濟發展的競爭力,應積極整合政府與民間產業以創造新的思維 與作為。
回顧人類發展歷程中,隨著人口數逐年增加,相對產生的資源匱乏問題也日益 增加,世界人口變化與資源管理的歷程中便整理出了自西元 1800 年至 2010 年的發 展歷程,而從中可見人口自十億暴漲至六十億人口的過程中,資源 ( 糧食、水源、材 料 ) 管理逐漸成形,能源重心也漸漸從化石能源調整為再生能源,然而面對近年氣候 變遷、資源短缺、消費者持續消費行為的問題,仍須提出創新的作為以利改善世代 所面臨的瓶頸,第一波循環經濟的發展於 2000 年已悄然成形,源頭減量及清潔生產的理念也隨國際潮流引進臺灣,而面對即將來臨的循環經濟第三波發展,則能有效 結合舊有的產源減量、清潔生產及環保材料及近年推行的環境影響評估 (EIA)、生命 週期評估 (LCA)、碳足跡及搖籃至搖籃的理念,成功建立新的資源循環圈。
(三)臺灣循環經濟的發展
從臺灣循環經濟的發展脈絡來看,從早先的議題較侷限於廢棄物的去向管理, 國內需要有足夠的最終處理設施,然而,新掩埋場難以再取得,焚化爐興建也常遭 民眾抗爭,所以透過廢棄物減量以及資源回收再利用,減少處理廢棄物的負擔,成 為施政的主要手段。在這 20 年以來,臺灣的廢棄物量已經大幅減少,並且導致焚化 廠還有多餘的處理容量。這期間環保署與經濟部分別推廣「3R」以及「清潔生產」, 帶動許多製造業的升級,也讓國內資源回收再利用業者數量逐年增加,可以視為臺 灣循環經濟的第一波發展。
循環經濟第一波至第二波發展期間,環保產業隨之蓬勃發展,根據作者觀察, 全球環保市場,包括「環保服務業」、「環保設備業」及「環保資訊業」,三者市場皆 逐年增加。其中,環保設備業每年市場規模變化不大,環保資源業則是三大類中成 長最快速的行業,而環保服務業的規模維持在 3,500 億美元以上,每年仍持續成長, 並且在三大類的環保規模中常年居冠。
隨著第一波與第二波的循環經濟發展到一定程度,將很難再有大幅的突破,因 為在一個局部系統中,能掌握的機會已經幾近都運用了。舉例來說,當特定產業已 經將生產效率,在具經濟可行性下做到最好,清潔生產就少有再提升的空間 ;民眾 依既有的廢棄物已經依法規分類回收,回收率也就難再提升 ;但工業區內各廠商的 廢熱、廢水以及副產品已盡量互相整合再利用,其他的廢棄物質仍需要負擔清除處 理的成本。要產生第三波循環經濟的發展,需要在更大系統性中發掘更多的機會。
第三波突破性的循環經濟需要有更大的系統視野,循環經濟不只看處理廢棄物 的問題,而更考慮跨整個供應鏈的整合,包括原料來源的選用、設計製造、產品服 務的提供、消費模式、及產品廢棄後如何導入循環。另一種說法,循環經濟轉型是 對過去的線性經濟,做生產供應鏈系統的重新設計,連同消費的型態也一同改變。 在更大的系統視野中,循環經濟產生可在效益層面的產生大跳躍,不像過去只鎖定 廢棄物的預防與減量,新的循環經濟還更能在跨產業鏈、跨區域、新的循環體系上,產生更多的價值與新型態的效益。
三、生質材料與循環經濟
(一)生質塑膠的發展
循環經濟概念當道,在追求永續發展主流意識下,循環經濟成為全球致力發展 的新趨勢。塑膠發明至今已逾百年,提供民眾便利的生活,但是難以處理的廢棄塑 膠也造成環境危害。不過,截至目前為止,全球塑膠回收率仍低於 15%,而且塑膠 幾乎無法分解,只能裂解成為塑膠微粒。更令人擔憂的是,全球 83% 的飲用水都具 有塑膠微粒,就像是水中的 PM2.5。近年塑膠使用衍生的海洋汙染、塑膠微粒危害 等問題日益受到重視,突顯發展「環境友善塑膠材料」的必要性與急迫性。近期七 大工業國組織峰會達成共識,目標 2030 年塑膠材料得以 100% 循環再利用或能資源 化等方式為最終處置。顯示出未來全球塑膠產業勢必將與循環經濟扣合,生質塑膠 已被視為推動塑膠循環經濟的必要選項之一。
生質塑膠是可以在自然界降解的塑膠材質,在有足夠的溼度、氧氣與適當微生 物存在的自然掩埋或堆肥環境中,可被微生物所代謝分解產生水和二氧化碳或甲 烷,對環境危害較小,所以在日本又稱為綠色塑膠。實際上,生質塑膠並不是什麼 新概念,由樟腦和硝化纖維製成的賽璐珞 (Celluloid Nitrate)1 ,早在 1850 年代就被發 明出來作為象牙撞球的替代品。但就像其他早期發明的可循環塑膠一樣、賽璐珞缺 乏合成塑膠的可撓性和發展性,因此現在多半只能拿來做領口襯料和桌球。
生質塑膠(Biomass Plastics)就是利用玉米、小麥、馬鈴薯等所富含的澱粉、 纖維素為原料,並運用生化科技,經過精煉、發酵、合成等程序聚合形成生物可分 解的材質,以「聚乳酸」(Polylactide, 以下簡稱 PLA)) 最為典型,且是生產量最大的 一種。初期 PLA 在導入食品接觸容器時,多運用於冷飲容器及生鮮低溫儲藏的包裝 盒,其原始材質的耐熱溫度 60℃ 左右,確實足以確保使用的安全。但由於環保政 策於多年前的支持使用,其材質開始製作成各類食品容器具及包裝材料。但因生產 廠家眾多,逐漸由原始的冷飲容器及生鮮低溫儲藏的包裝盒轉向製作成高溫使用的 碗、筷、杯、匙等家庭用品,而耐熱溫度則成為 PLA 材質的主要問題來源。
1 賽璐珞(Celluloid Nitrate)是一種合成樹脂的名稱。 是歷史上最早發明的熱可塑性樹脂。 以硝化纖維和樟腦等原料 合成。 代表性製品為桌球、人偶等。
(二)環境友善塑膠材料
塑膠發明至今已逾百年,提供人們便利的生活,然而處理傳統石化來源的廢棄 塑膠卻是相當棘手的問題。傳統塑膠不易分解,進而造成環境污染以及危害地球物 種的生存(全球每年超過 150 萬個海洋生物,因廢棄塑膠而喪命);焚化燃燒處理, 則有廢毒氣產生等問題 ;不恰當的回收策略,仍會產生一定比例無法回收再利用的 塑膠廢棄物,繼續對全球環境造成危害。為了解決傳統塑膠廢棄物的問題,開發「環 境友善塑膠材料」成為重要課題。環境友善塑膠材料是指塑膠材料在大自然環境的 條件下,輔以足夠的溼度與氧氣,在自然掩埋或堆肥環境中,可被微生物分解成水 和二氧化碳 ;或是在工業堆肥的條件下可分解 ;又或者是具有生物質含量但不可分 解的特性,在廢棄回收後進行燃燒,不會產生有毒氣體 ;以及其他與綠色環保概念 有關的塑膠材料。
發展環境友善塑膠材料最主要的是環保因素。由於循環經濟概念當道,在追求 永續發展的主流意識下,強調資源可持續回復的循環經濟,遂成為全球致力發展的 新趨勢。投入資源開發生質塑膠、可回收塑膠等環境友善塑膠材料自然地成為一門 非常重要課題。亞洲地區已成為全球塑膠產品最主要消費市場,塑膠發展的議題在 此區域更顯重要,也再次合理解釋「環境友善塑膠材料」得以擠進亞洲前十大重點 技術的原因。
生質塑膠屬於環境友善塑膠材料一種,原料從天然資源而來,例如由玉米、木 薯、小麥、馬鈴薯、纖維素、棕櫚油等所製成之一種塑膠材料。環境友善塑膠材料 是指塑膠材料在大自然環境的條件下,輔以足夠的溼度與氧氣,在自然掩埋或堆肥 環境中,可被微生物分解成水和二氧化碳 ;或是在工業堆肥的條件下可分解 ;又 或是具有生物質含量但不可分解的特性,在廢棄回收後進行燃燒,不會產生有毒氣 體 ;以及其他與綠色環保概念有關的塑膠材料。
(三)生質材料在各國的運用
目前生質塑膠原材料仍以農業作物為主,如蔗糖、澱粉、植物油等。泰國為全 球最大的木薯產品出口國,印尼亦是重要出口國。泰國為確立發展生質塑膠未來市 場潛力及規模,該國企業及國際企業持續增加投資。為加強發展生質塑膠,泰國政 府設定十年目標,選定以甘蔗和木薯為發展生質能源與生質化學品的經濟作物來源。
目前許多亞洲國家已限制使用一次性塑膠,但生質塑膠、回收塑膠等「環境友 善塑膠材料」並不在限制名單內,有助於推廣生質塑膠的使用。為了加速塑膠材料 綠色概念的發展,印度政府甚至訂下「2020 年前全面棄絕一次性的塑膠製品」的嚴 苛目標政策,此政策勢必加速印度開發與推廣使用生質塑膠。目前生質塑膠已使用 在各個國家,在政府與企業持續投資資源開發,以及人民環保意識持續增加,可預 見 2030 年,生質塑膠將成為亞洲最普遍應用的技術。
臺灣生質塑膠產業受限於原料(農作物)供應不足,因此主要進口生質塑膠材 料 ( 農作物經過加工後的初級品 ) 進行改質和混練、加工或接受委託代工製成塑膠產 品,再交由下游應用端進行銷售。若要強化臺灣生質塑膠產業發展,掌握充足料源 則是關鍵因素之一。建議原料端的部分可配合新南向政策,透過國際合作,掌握東 南亞料源,建立自主量產能力,並以現有研發能量,開發高階的高值應用,有助提 升臺灣生質塑膠產業競爭力。
四、PLA在循環經濟的運用
(一)PLA的優點
PLA 是一種新型的生物可降解材料,使用可再生的植物資源(如玉米)所提出 的澱粉原料製成。澱粉原料經由糖化得到葡萄糖,再由葡萄糖及一定的菌種發酵製 成高純度的乳酸,再通過化學合成方法合成一定分子量的 PLA。其具有良好的生物 可降解性,使用後能被自然界中微生物完全降解,最終生成二氧化碳和水,不污染 環境,這對保護環境非常有利,是公認的環境友好材料。世界二氧化碳排放量據新 聞報導在 2030 年全球溫度將升至 60℃,普通塑膠的處理方法依然是焚燒火化,造成 大量溫室氣體排入空氣中,而 PLA 塑膠則是掩埋在土壤裡降解,產生的二氧化碳直 接進入土壤有機質或被植物吸收,不會排入空氣中,不會造成溫室效應。
在生物分解性塑膠中,PLA 因為產量的關係,最常被使用到容器及包裝類產品。 目前的主要使用於包裝盒、蛋盒、冷飲容器、生鮮托盤 ;以及使用於電子類產品的 外包裝。外包裝在回收的過程中可以視同為紙類回收物,後續處理方式相對單純。
第一,機械性能及物理性能良好。PLA 適用於吹塑、熱塑等各種加工方法,加 工方便,應用十分廣泛。可用於加工從工業到民用的各種塑膠製品、包裝食品、速 201 循環經濟與 PLA 綠色創新產品開發食飯盒、無紡布、工業及民用布。進而加工成農用織物、保健織物、抹布、衛生用 品、室外防紫外線織物、帳篷布、地墊面等等,市場前景十分看好。
第二,相容性與可降解性良好。PLA 在醫藥領域應用也非常廣泛,如可生產一 次性輸液用具、免拆型手術縫合線等,低分子 PLA 作藥物緩釋包裝劑等。PLA 除了 有生物可降解塑膠的基本的特性外,還具備有自己獨特的特性。傳統生物可降解塑 膠的強度、透明度及對氣候變化的抵抗能力皆不如一般的塑膠。
第三,PLA 和石化合成塑膠的基本物性類似,也就是說,它可以廣泛地用來製 造各種應用產品。PLA 也擁有良好的光澤性和透明度,和利用聚苯乙烯所制的薄膜 相當,是其他生物可降解產品無法提供的。
第四,PLA 具有最良好的抗拉強度及延展度,PLA 也可以各種普通加工方式生 產,例如 :熔化擠出成型,射出成型,吹膜成型,發泡成型及真空成型,與廣泛使 用的聚合物有類似的成形條件,此外它也具有與傳統薄膜相同的印刷性能。如此, PLA 就可以應各不同業界的需求,製成各式各樣的應用產品。
第五,PLA 可以循環使用。PLA 的循環使用與其他聚合物不太相同的是,廢舊 的 PLA 塑膠會被收集在特殊的容器中,通過熱解、水解等方法降解成為小分子單 體,再通過生產商將單體乳酸合成為具有一定性能的 PLA 原材料,再次進入市場使 用。
第六,PLA 薄膜具有良好的透氣性、透氧性及透二氧二碳性,它也具有隔離氣 味的特性。病毒及黴菌易依附在生物可降解塑膠的表面,故有安全及衛生的疑慮, 然而,PLA 是唯一具有優良抑菌及抗黴特性的生物可降解塑膠。
第七,當焚燒 PLA 時,其燃燒熱值與焚化紙類相同,是焚化傳統塑膠(如聚乙 烯)之一半,而且焚化 PLA 絕對不會釋放出氮化物、硫化物等有毒氣體。人體也含 有以單體形態存在的乳酸,這就表示這種分解性產品具有的安全性。
(二)PLA在行業應用
PAL 現階段研究狀況聚焦於利用農業剩餘物資,如稻桿、蔗渣以及垃圾廢棄物 等為原料,將其轉化為 PLA 成為技術開發的焦點。在各項研究開發上,利用稻桿等 含有木質纖維素的農業廢棄物進行發酵聚合,為國際發展趨勢,被看好是下一階段 生質塑膠原料的供給來源。能否供應充足的原材料,是發展生質塑膠的關鍵。
PLA 的熱穩定性好,加工溫度 170 ~ 230℃,有好的抗溶劑性,可用多種方式 進行加工,如擠壓、紡絲、雙軸拉伸,注射吹塑。由 PLA 製成的產品除能生物降解 外,生物相容性、光澤度、透明性、手感和耐熱性好,光華偉業開發的 PLA 還具有 一定的抗菌性、阻燃性和抗紫外性,因此用途十分廣泛,例如 :
1. 一次性用品領域
PLA 對人體絕對無害的特性使得 PLA 在一次性餐具、食品包裝材料等一次性用 品領域具有獨特的優勢。其能夠完全生物降解也符合世界各國,特別是歐盟、美國 及日本對於環保的高要求。但,採用 PLA 原料所加工之一次性餐具存在著不耐溫、 耐油等缺陷。這樣就造成其的功能作用大打折扣,以及在運輸途中餐具變形、材質 變脆,造成大量次品。不過,經過技術發展,市場已有經過 PLA 改性後的材料,可 以有效克服原粒的缺點,有的甚至耐熱溫度高達 120 度以上,可以用作微波爐用具 材料。
2. 汽車領域
日本東麗公司結合 PLA 樹脂改性技術、纖維製造技術和染色加工技術,開發了 以高性能 PLA 纖維為主要成份的車用腳墊和備用輪胎箱蓋。備用輪胎箱蓋已經在豐 田汽車公司 2003 年推出的全面改進小型車「Raum」上使用。在繼腳墊和備用輪胎箱 蓋開發以後,東麗公司有開發了適用於車門、輪圈、車座、天棚材料的其他汽車部 件的 PLA 產品。
3. 電子領域
為了節省石油資源同時減少地球溫室效應,進一步拓展由可再生的生物資源製 造而來的 PLA 的應用領域,日本許多公司對 PLA 在電子電器領域的應用進行深入研 究並取得了卓越的成效。
4. 生物醫藥領域
生物醫藥行業是 PLA 最早開展應用的領域。PLA 對人體有高度安全性並可被組 織吸收,加上其優良的物理機械性能,還可應用在生物醫藥領域,如一次性輸液工 具、免拆型手術縫合線、藥物緩解包裝劑、人造骨折內固定材料、組織修復材料、 人造皮膚等。高分子量的 PLA 有非常高的力學性能,在歐美等國已被用來替代不銹 鋼,作為新型的骨科內固定材料如骨釘、骨板而被大量使用,其可被人體吸收代謝的特性使病人免收了二次開刀的苦。其技術附加值高,是醫療行業發展前景的高分 子材料。
(三)PLA發展問題
玉米同為人類的食物來源之一,因氣候變遷,全球糧食不足的情況下,造成玉 米價格上漲,使用玉米去製造 PLA 的食品原料,也同樣成為各界挑戰的議題。另 外,國內地狹人稠,寸土寸金,所有的掩埋場因空間不足的緣故,無法接受掩埋這 類廢棄物,而 PLA 材質的使用與推廣,則難以展現與達成其原開發的目的與素求。 過去生質塑膠時常被認為來源為糧食作物,存在與民爭糧的疑慮。故現階段研究狀 況,聚焦於利用農業剩餘物資,如稻桿、蔗渣以及垃圾廢棄物等作為原料,將其轉 化為生質塑膠成為技術開發的焦點。在各項的研究開發上,利用稻桿等含有木質纖 維素的農業廢棄物進行發酵聚合,為國際上的發展趨勢,並且被看好是下一階段生 質塑膠原料的供給來源。凝聚國際共識 2030 完成 100% 循環再利用技術在七大工業 國組織(G7)峰會已達成共識,目標 2030 年塑膠材料得以 100% 循環再利用或能資 源化等方式為最終處置。此舉顯示未來全球塑膠產業勢必將與循環經濟扣合,生質 塑膠已被視為推動塑膠循環經濟的必要選項之一。
初期 PLA 在導入食品接觸容器時,多運用於冷飲容器及生鮮低溫儲藏的包裝 盒,其原始材質的耐熱溫度 60℃ 左右,確實足以確保使用的安全。但由於環保政 策於多年前的支持使用,其材質開始製作成各類食品容器具及包裝材料。但因生產 廠家眾多,逐漸由原始的冷飲容器及生鮮低溫儲藏的包裝盒轉向製作成高溫使用的 碗、筷、杯、匙等家庭用品,而耐熱溫度則成為 PLA 材質的主要問題來源。
玉米同為人類的食物來源之一,因氣候變遷,全球糧食不足的情況下,造成玉 米價格上漲,使用玉米去製造 PLA 的食品接觸物件,也同樣成為各界挑戰的議題。 另外,國內地狹人稠,寸土寸金,所有的掩埋場因空間不足的緣故,無法接受掩埋 這類廢棄物,而 PLA 材質的使用與推廣,則難以展現與達成其原開發的目的與素 求。
PLA 材質屬於熱塑性高分子材質並非是均質材料,目前單純的原始材質及經改 質強化彈性及耐熱性的不同類型皆同時使用中,而耐熱特性的表現仍將是最主要的 考量因素。綜合以上說明,以非專業人士要在無明確資訊下有效確定材質之耐熱溫度是不可能的。但可以藉由材質的判定與標示規定資訊來判別適用性。當然,若能 確定使用場合與方式,就變得比較容易。
(四)企業的應用情況
寀呈股份有限公司的策略定位在綠色創新、傳統再生、天然好物與在地生產, 為了掌握關鍵的綠色原料改質技術。2014 年 7 月寀呈開始以綠色概念推出「S•S• E • 」系列產品,使用看似塑膠卻不是塑膠、來自玉米的純植物原料 PLA 製造,包 括 Breere 會呼吸的保鮮盒、tefee cup、twins spoon 好心情湯匙等產品 ;設計理念是 簡化過多與不必要的配件,達到與傳統保鮮盒相同的保鮮、防漏等效果,相對來說 減少藏汙納垢的縫槽,清洗時也能減少清潔劑與水資源的使用。創業過程因為與前 一代經營區塊不同,要投入綠色產業的前置資金與時間是很長的,除了內部溝通也 要尋求其他資源的協助,此外因為談到綠色產品多數都是貴又叫好不叫座,在完成 開發正式上市後也費了許多心力在與消費者溝通,要讓消費者瞭解產品的理念與設 計特色,才能獲得在各大通路上架販售的機會。
重視食安,寀呈公司多年投入環保材質 PLA 研究,開發保鮮盒與水杯等無毒生 活產品,並自創品牌「SEE」,目前已成功上市且成功獲得歐美訂單,希望未來提高 臺灣品牌國際市場能見度。寀呈公司已成功開發環保材質 PLA 生活用品,也取得生 物可分解材質國際認證。看準綠色經濟當道,寀呈積極投入食品容器安全性的研究, PLA 保鮮盒與水杯是以植物為基底的材料,耐熱溫度超過 110 度,且不會釋出雙酚 A、塑化劑等有毒物質,目前在臺已上市,希望能攻下保鮮盒與水杯市場。未來還規 劃將保鮮盒等產品 LOGO 或其餘標示增設感溫變色功能。
五、結論
最近循環經濟在台灣正流行!自從小英總統在 520 就職演說上提到「要讓台灣 走向循環經濟的時代」以後,這個詞彙就在台灣流行了起來。在國內已有多家業者 大量製造 PLA 的相關食品接觸物件,進而外銷至歐美國家,其產能也不斷在擴充的 中,若 PLA 材質的食品接觸物件符合食品安全衛生標準,再加上材質還能在自然環 境中完全分解,自然會由消費大眾所採用。但整體來說,塑料材質在高溫下較易產 生高風險,自 2008 年將原本 PLA「不耐熱」及「材質脆」的兩大問題,透過提高結晶性及合膠方式加以解決。目前,臺灣創新研發能量充足,PLA 是臺灣目前應用 最廣泛的生質塑膠,生鮮蔬果盒及冷飲杯的應用佔需求量 90% 左右,PLA 製成品約 70% 外銷歐美日等國為主。
不過,臺灣生質塑膠產業受限於原料(農作物)供應不足,因此主要進口塑膠 材料(農作物經過加工後的初級品)進行改質和混煉、加工或接受委託代工製成塑 膠產品,再交由下游應用端進行銷售。若要強化臺灣 PLA 產業發展,能否掌握充足 料源為關鍵因素之一。原料端的部分可配合新南向政策,透過國際合作,掌握東南 亞料源,建立自主量產能力,並以現有研發能量,進而開發高階的高值應用,將能 提升臺灣生質塑膠產業競爭力。
食物碳足跡七階段 在 義美食品- 【義美愛地球.低碳做環保】 各位粉絲知道什麼是 ... 的推薦與評價
2011年7月22日 ... 知道此公司、生產製程、產品(含服務)及個人碳排放量,而透過碳標籤制度的施行,能使產品各階段的碳排放來源透明化,促使企業調整其產品碳排放 ... ... <看更多>
食物碳足跡七階段 在 從食物源頭讓地球少「碳」氣!認識飲食碳足跡與永續農業 的推薦與評價
透過 食物 旅程了解從 食物 生產的土地到餐桌、再到剩食及廢棄物處理所產生的「飲食 碳足跡 」,並進一步認識如何透過「永續農業」從源頭幫助減碳, ... ... <看更多>