【立場轉載】【2020 諾貝爾物理學獎】廣義相對論與宇宙最黑暗秘密
打風落雨留在家,為何不試試學習黑洞的理論呢?😹😹😹
//諾貝爾獎有三個科學奬項,我們在學校也習慣以「物理、化學、生物」等不同科目去區分不同科學領域。這種分界當然能夠方便我們以不同角度去理解各種自然現象,但大自然其實是不分科目的。科學最有趣的是各種自然現象環環相扣,我們不可能只改變大自然的某一個現象而不影響其他。就好像蝴蝶效應,牽一髮而動全身。
廣義相對論間接推論暗物質存在的必要
廣義相對論是目前最先進的重力理論,它能夠解釋迄今為止所有實驗和觀測數據。然而,天文學家發現銀河系的轉速和可觀測宇宙的物質分佈,都顯示需要比觀測到的物質更加多的質量。這是物理學的其中一個未解之謎,有時會被稱為「消失的質量」問題。那些「應該在而卻看不到」的物質,就叫做暗物質 (dark matter) 。
有些物理學家猜測,會否根本沒有暗物質,而是廣義相對論需要被修改呢?他們研究「修正重力 (modified gravity) 」理論,希望藉由修正廣義相對論去解釋這些觀察結果,無需引入暗物質這個額外假設。可是從來沒有修正重力理論能媲美廣義相對論,完美地描述宇宙一切大尺度現象。
天文學研究向來難以得到諾貝爾獎,因為天文發現往往缺乏短期實際應用。然而過去十年之間,有關天文發現的研究卻得到了五個諾貝爾物理學獎。換言之,過去幾十年間改變人類對宇宙的基本認知的,有一半是來自於天文現象。其中有關廣義相對論的包括 2017 年的重力波觀測、 2019 年的宇宙學研究,以及 2020 年的黑洞研究。
不過很少人提及這三個關於廣義相對論的發現其實同時令暗物質的存在更加可信。因為這些發現測量得越精確,就代表廣義相對論的錯誤空間更小。換句話說,物理學家越來越難以靠修正重力去解釋「消失的質量」問題,所以暗物質的存在就越來越有其必要了。
換句話說,如果證明黑洞存在,其對科學的影響並不單止是為愛因斯坦的功績錦上添花,而是能夠加深人類對構成宇宙的物質的理解。
描述四維時空的圖
談黑洞之前,我們首先要理解一下,物理學家是如何研究時空的。研究時空的一種方法,就是利用所謂的時空圖 (spacetime diagram) 。一般描述幾何空間的圖,在直軸和橫軸分別表示長和闊,形成一個二維平面。有時更可按需要加多一條垂直於平面的軸,代表高度。長、闊、高,構成三維空間。但如果要再加上時間呢?那麼就再在垂直於長、闊、高的第四個方向畫一條軸吧。咦?
怎麼了,找不到第四個方向嗎?這是當然的,因為我們都是被囚禁在三維空間之中的生物。如果有生活在四維空間裡的生物,牠們會覺得我們很愚蠢,問我們:「為什麼不『抬頭』?第四個方向不就在這邊嗎?」就像我們看著平面國的居民一樣,在二維生物眼中,牠們的世界只有前後左右,沒有上下。到訪平面國的我們也會問:「為什麼不『抬頭』?第三個方向不就在這邊嗎?」但牠們無論如何也做不到。
宇宙是三維空間,另外加上時間。如果要加上時間軸這個「第四維」的話,我們就必須犧牲空間維度。物理學家使用的時空圖就是個三維空間,直軸代表時間(時間軸)、兩條水平的橫軸代表空間(空間軸)。當然,把本來的三維空間放在二維的平面上,我們需要一些想像力。在時空圖上,每個點都代表在某時某地發生的一件事件 (event) ,因此我們可以利用時空圖看出事件之間因果關係。一個人在時空中活動的軌跡,在時空圖上稱為世界線 (world line) 。
由於時間軸是垂直的,並且從時空圖的「下」向「上」流動。一個站在原地位置不變的人的世界線會是平行時間軸的直線。由於光線永遠以光速前進,光線的世界線會是一條斜線。而只要適當地選擇時間軸和空間軸的單位,光線的世界線就會是 45 度的斜線。因為沒有東西能跑得比光快,一個人未來可以發生的事件永遠被限制在「上」的那個由無數條 45 度的斜線構成的圓錐體之間,而從前發生可以影響現在的所有事件則永遠在「下」的圓錐體之間。這兩個「上」和「下」的圓錐體內的區域稱為那個人當刻的光錐 (light cone) ,而物理學家則習慣以「未來光錐 (future light cone) 」和「過去光錐 (past light cone) 」分別表示之。
所有東西的世界線都必定被位於未來和過去光錐之內。在沒有加速度的情況下,所有世界線都會是直線。如果涉及加速,世界線就會是曲線。而廣義相對論的核心概念,就是重力與加速度相等,兩者是同一種東西。因此我們就知道如果在時空圖上放一個質量很大的東西,例如黑洞,那麼附近的世界線就會被扭曲。不單是物質所經歷的事件,連時空也會被重力場扭曲,因此時空圖上的格網線和光錐都會被扭曲往黑洞的方向。換句話說,越接近黑洞,你的越大部分光錐就會指向黑洞內部。因為你的世界線必須在光錐之內,你會剩下越來越小的可能逃離黑洞的吸引。
2020 年的諾貝爾物理學獎一半頒給了彭羅斯 (Roger Penrose) ,以表揚他「發現黑洞形成是廣義相對論的嚴謹預測」。在彭羅斯之前的研究,大都對黑洞的特性作出了一些假設,例如球狀對稱。這是因為以往未有電腦能讓物理學家模擬黑洞,只能用人手推導方程。但廣義相對論是非線性偏微分方程,就算不是完全沒有可能也是極端難解開的,所以物理學家只能靠引入對稱和其他假設去簡化方程。因此許多廣義相對論的解都是帶有對稱假設的。這就使包括愛因斯坦在內的許多物理學家就疑惑,會不會是因為額外加入的對稱假設才使黑洞出現?在現實中並沒有完美的對稱,會不會就防止了黑洞的出現?
黑洞只是數學上的副產品嗎?
彭羅斯發現普通的高等數學並不足以解開廣義相對論的方程,因此他就轉向拓撲學 (topology) ,而且必須自己發明新的數學方法。拓撲學是數學其中一個比較抽象的分支,簡單來說就是研究各種形狀的特性的學問。 1963 年,他利用一種叫做共形變換或保角變換 (conformal transformation) 的技巧,把原本無限大的時空圖(因為空間和時間都是無限延伸的)化約成一幅有限大小的時空圖,稱為彭羅斯圖 (Penrose diagram) 。
彭羅斯圖的好處除了是把無限縮為有限,還有另一個更重要的原因:故名思義,經過保角變換後的角度都不會改變。其實在日常生活中,我們經常都會把圖變換為另一種表達方式,例如世界地圖。由於地球表面是彎曲的,如果要把地圖畫在平面的紙上,就必須利用類似的數學變換。例如我們常見的長方形或橢圓形世界地圖,就是利用不同的變換從球面變換成平面。有些變換並不會保持角度不變,例如在飛機裡看到的那種世界地圖,在球面上的「直線」會變成了平面上的「曲線」。
扯遠了。回來談彭羅斯圖,為什麼他想要保持角度不變?因為這樣的話,光錐的方向就會永遠不變,我們可以直接看出被重力影響的事件的過去與未來。彭羅斯也用數學證明,即使缺乏對稱性,黑洞也的確會形成。他更發現在黑洞裡,一個有著無限密度的點——奇點 (singularity) ——必然會形成。這其實就是彭羅斯-霍金奇點定理 (Penrose-Hawking singularity theorem) ,如果霍金仍然在世,他亦應該會共同獲得 2020 年諾貝爾物理學獎。
在奇點處,所有已知物理學定律都會崩潰。因此,很多物理學家都認為奇點是不可能存在宇宙中的,但彭羅斯的計算卻表明奇點不但可以存在,而且還必定存在,只是在黑洞的內部罷了。如果黑洞會旋轉的話(絕大部分都會),裡面存在的更不會是奇點,而是一個圈——奇異圈 (singularity ring) 。
黑洞的表面拯救了懼怕奇點的物理學家。黑洞的表面稱為事件視界 (event horizon) ,在事件視界之內,你必須跑得比光線更快才能回到事件視界之外。因此沒有任何物質能夠回到黑洞外面,所以黑洞裡面發生什麼事,我們都無從得知。就是這個原因給予了科幻電影如《星際啟示錄 (Interstellar) 》創作的空間——在黑洞裡面,編劇、導演和演員都可以天馬行空。只要奇點永遠被事件視界包圍,大部分科學家就無需費心去擔心物理學可能會分崩離析了。甚至有些科學家主張,研究黑洞的內部並不是科學。
雖然如此,卻沒有阻礙彭羅斯、霍金等當代理論天體物理學家,利用與當年愛因斯坦所用一樣的工具——紙和筆——去研究黑裡面發生的事情。雖然或許我們永遠無法證實,但他們的研究結果絕非無中生有,而是根據當代已知物理定律的猜測,即英文中所謂 educated guess 。利用彭羅斯圖,我們發現不單奇點必定存在,而且在黑洞裡面,時間和空間會互相角色。
但這是什麼意思?數學上,時間和空間好像沒有分別,但在物理上兩者分別明顯:在空間中我們可以自由穿梭,但在時間裡我們卻只能順流前進。彭羅斯發現,帶領掉入黑洞的可憐蟲撞上奇點的並非空間,而是時間,因此我們也說奇點是時間的終點。亦因為在黑洞裡面掉落的方向是時間,向後回頭是不可能的,所以一旦落入黑洞,就只能走向時空的終結。
看見黑洞旁的恆星亂舞
另一半諾貝爾獎由 Reinhard Genzel 和 Andreas Ghez 平分,以表揚他們「發現銀河系中心的超大質量緻密天體」。銀河系中心的確有一個超大質量的物體,而且每個星系中心都有一個。這些質量極大的物體,就是所謂的超大質量黑洞 (supermassive blackholes) 。
上世紀 50 年代開始,天文學家陸續發現了許多會釋放出無線電輻射的天體,稱為類星體 (quasars) 。之後其中一個類星體 3C273 被觀測確認是銀河系外的星系中心。根據計算, 3C273 釋放出的無線電能量是銀河系中所有恆星的 100 倍。起初,天文學家認為這些能夠釋放巨大能量的類星體,必然是些比太陽重百萬倍的恆星。但是理論計算結果卻表明,這麼重的恆星會是極不穩定的,而且壽命會非常短,因此類星體不可能是恆星。
為什麼這些類星體不可能是恆星?因為恆星的發光度是有極限的,而且正比於恆星的質量。這個極限稱為愛丁頓極限 (Eddington limit) 。如果恆星的發光度超出愛丁頓極限,光壓(radiation pressure ,即光子對物質所施的壓力)就會超過恆星自身的重力,恆星就會變得不穩定。因此,天文學家逐漸改而相信類星體是位於星系中心的超大質量黑洞。這也令類星體多了一個名字:活躍星系核(active galactic nucleus)。
每個黑洞旁邊都有一個最內穩定圓形軌道 (innermost stable circular orbit) ,依據黑洞會否旋轉而定,大概是黑洞半徑的 3–4.5 倍。比最內穩定圓形軌道更接近黑洞的範圍,環繞黑洞運行的物質都會因不穩定的軌道而墜落黑洞之中,並在墜落的過程中釋放出 6–42% 的能量,因此可以解釋活躍星系核的強大發光度。
另一方面,彭羅斯在 1969 年亦發現一個旋轉的黑洞能夠把能量轉給物質,並且把物質拋出去,這個過程稱為彭羅斯過程 (Penrose process) 。換言之,從黑洞「偷取」能量是有可能的。科學家估計,科技非常先進的外星文明有可能居住於黑洞附近,並利用彭羅斯過程從黑洞提取免費的能源。這個過程亦進一步支持超大質量黑洞能夠釋放巨大能量的理論。
由於 E=mc2 ,能量即是質量,因此被偷取能量的黑洞的質量就會減少。霍金在 1972 年發現一個不會旋轉的黑洞的表面積不可能減少。黑洞質量越大,其表面積就越大,因此不會旋轉的黑洞不會有彭羅斯過程。他亦發現,如果是個會旋轉的黑洞,其表面積是有可能減少的。因此霍金的結論支持了彭羅斯的理論。
Genzel 和 Ghez 兩人的研究團隊已經分別利用位於智利的歐洲南方天文台 (European Southern Observatory) 的望遠鏡和位於夏威夷的凱克望遠鏡 (Keck Telescope) 監察了距離地球約 25,000 光年的銀河系中心區域將近 30 年之久。他們發現有很多移動速度非常快的恆星,正在環繞一個不發光的物體轉動。這個不發光的物體被稱為人馬座 A* (Sagittarius A*, 縮寫為 Sgr A*) 。 Sgr A* 會放出強大的無線電波,這點與活躍星系核的情況相似。
他們不單確認了這些恆星的公轉速率與 Sgr A* 的距離的開方成反比, Genzel 的團隊更成功追蹤了一顆記號為 S2 的恆星的完整軌跡。這兩個結果都表明, Sgr A* 必然是一個非常細小但質量達 400 萬倍太陽質量的緻密天體。這樣極端的天體只有一種可能性:超大質量黑洞。
霍金輻射 黑洞的未解之謎
諾貝爾物理學委員會在解釋科學背景的文件中亦特別提及霍金的黑洞蒸發理論以及霍金輻射 (Hawking radiation) 。現時仍然未能探測到霍金輻射的存在,未來若成功的話除了將再一次驗證廣義相對論以外,更會對建立量子重力理論 (quantum gravity theory) 大有幫助。就讓我們拭目以待吧!
重力波研究、宇宙學研究、黑洞研究,都是直接檢驗廣義相對論預言的方法。加上 2019 年 4 月 10 日公布的黑洞照片,大自然每一次都偏心愛因斯坦。相信愛因斯坦在天上又會伸出舌頭,調皮地說:「我早就知道了!」//
theorem theory 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最佳解答
🤓 หลายคนอาจเคยบ่น "เรียนเลขไปทำไม ไม่เห็นได้ใช้เลย"
อันนี้เป็นแค่ตัวอย่าง เพื่อให้รู้ว่าเลขที่เราเรียนตอนม.ปลาย
ไม่ควรทิ้งถ้าคิดจะเรียนคอมพิวเตอร์ ในระดับสูง
.
👉 1) สมการเชิงเส้น
เริ่มต้นจากสมการเส้นตรง ที่มีหน้าตาดังนี้ y=mx+c เรียกว่ารูปมาตรฐาน
- เมื่อ m เป็นความชัน
-ส่วน c เป็นจุดตัดแกน y
.
สมการเชิงเส้นเราจะได้เรียนในระดับ ม 4
พอในม.5 วิชา วิทยาการคำนวณ
ก็จะเห็นประโยชน์ของสมการเส้นตรงถูกนำไปใช้ในงาน data science (วิทยาการข้อมูล)
นำไปใช้วิเคราะห์ข้อมูลแบบ linear regression
.
กล่าวคือเมื่อเรามีข้อมูลย้อนหลังในอดีต
แล้วสามารถนำไปพล็อตลงบนกราฟแกน x กับ y
ผลปรากฏว่าข้อมูลมีความสัมพันธ์เป็นเส้นตรง
ในกรณีเราสามารถหาสมการเส้นตรงที่เหมาะสมสุด (optimize)
นำมาใช้พยากรณ์ข้อมูลล่วงหน้าในอนาคตได้
.
แต่ในกรณีที่ความสัมพันธ์ของข้อมูลพบว่าไม่ใช่เส้นตรง
เราสามารถใช้สมการที่ไม่ใช่เส้นตรง มาใช้พยากรณ์ข้อมูลก็ได้เช่นกัน
.
👉 2) เมทริกซ์
คือกลุ่มของจำนวนตัวเลข ที่เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส
นอกจากใช้แก้สมการหลายตัวแปรแล้ว
จะมีประโยชน์เวลานำไปประมวลภาพ (Image processing)
หรืองานพวกคอมพิวเตอร์วิชั่น (computer vision)
.
ต้องบอกอย่างนี้ว่า รูปภาพดิจิตอลที่เราเห็นเป็นสีสันสวยงาม
แต่ทว่าคอมไม่ได้มองเห็นเหมือนคน
มันมองเห็นเป็นเมทริกซ์ โดยข้างในเมทริกซ์ก็คือตัวเลขของค่าสี
และเราสามารถกระทำการคณิตศาสตร์กับรูปภาพได้
เช่น บวกลบ คูณหาร กับรูปภาพดิจิตอล ในมุมของเมทริกซ์
.
👉 3) ความน่าจะเป็น
ยกตัวอย่างเช่น ทฤษฏี Bayes' theorem
ทฤษฏีหนึงของความน่าจะเป็น
จะใช้หาว่าสมมติฐานใดน่าจะถูกต้องที่สุด โดยใช้ความรู้ก่อนหน้า (Prior Knowledge)
.
ทฤษีนี้ถูกนำไปใช้ในงานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่อง
เช่น จงหาความน่าจะเป็นที่ชาเขียวขวดนั้นจะผลิตจากโรงงานจากประเทศไทย
จงหาความน่าจะเป็นว่าผู้ป่วยจะเป็นโรคมะเร็ง เมื่อหายจากการติดเชื้อไวรัสโคโรนา
เป็นต้น
.
👉 4) แคลคูลัส
ตัวอย่างเช่น ถูกนำมาใช้ใน neural network
ซึ่งก็เครือข่ายประสาทเทียมที่เลียนแบบเซลล์สมอง
แต่จริงๆ ข้างในเครือข่ายจะประกอบไปด้วยน้ำหนัก
.
น้ำหนักที่ว่านี้มันก็คือตัวเลขจำนวนจริง ที่เริ่มต้นสุ่มขึ้นมา
แล้วเวลาจะหาค่าน้ำหนักที่เหมาะสม (optimize)
มันจะถูกปรับทีละเล็กทีละน้อย
โดยอาศัยหลักการเรื่องอนุพันธ์ หรือดิฟนั่นแหละ
.
👉 5) ตรรกศาสตร์
วิชานี้พูดถึง "ประพจน์" หมายถึงประโยคที่ให้ค่าออกมาเป็น True หรืด False
รวมถึงการใช้ตัวเชื่อมประพจน์แบบต่างๆ ไม่ว่าจะเป็น "และ" "หรือ" "ก็ต่อเมื่อ" เป็นต้น
.
ศาสตร์ด้านนี้เป็นพื้นฐานของระบบคอมพิวเตอร์
เพราะวงจรคอมพิวเตอร์พื้นฐาน มีแต่ตัวเลข 0 หรือ 1
จึงสามารถแทนด้วย False หรือ True ในทางตรรกศาสตร์
ไม่เพียงเท่านั้นวงจรอิเลคทรอนิกส์ ก็มีการดำเนินทางตรรกศาสตร์อีกด้วย
ไม่ว่าจะเป็น "และ" "หรือ" "ไม่" เป็นต้น
.
ยิ่งการเขียนโปรแกรม ยิ่งใช้เยอะ
เพราะต้องเปรียบเทียบเงื่อนไข True หรือ False
ในการควบคุมเส้นทางการทำงานของโปรแกรม
.
👉 6) ฟังก์ชัน
ฟังก์ชันคือความสัมพันธ์ จากเซตหนึ่งที่เรียกว่า 'โดเมน' ไปยังอีกเซตหนึ่งที่เรียกว่า 'เรนจ์' โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน
ซึ่งคอนเซปต์ฟังก์ชันในทางคณิตศาสตร์
ก็ถูกนำไปใช้ในการเขียนโปรแกรมแบบ functional programming
.
👉 7) เรขาคณิตวิเคราะห์
ถูกนำไปใช้ในวิชาคอมกราฟิก หรือเกมส์
ในมุมมองของคนที่ใช้โปรแกรมวาดรูปต่างๆ หรือโปรแกรมสร้างแอนนิมเชั่นต่างๆ
เราก็แค่คลิกๆ ลากๆ ก็สร้างเสร็จแล้วใช่มั๊ยล่ะ
.
แต่หารู้หรือไม่ว่า เบื้องเวลาโปรแกรมจะวาดรูปทรง เช่น สี่เหลี่ยม วงรี ภาพตัดกรวยต่างๆ
ล้วนอาศัย เรขาคณิตวิเคราะห์ พล็อตวาดรูปทีละจุดออกมาให้เราใช้งาน
.
👉 8) ปีทาโกรัส
ทฤษฏีสามเหลี่ยมอันโด่งดังถูกนำไปใช้วัดระยะทางระหว่างจุดได้
ซึ่งจะมีประโยชน์ในการแยกแยะข้อมูล โดยใช้อัลกอริทึม
K-Nearest Neighbors (KNN)
ชื่อไทยก็คือ "ขั้นตอนวิธีการเพื่อนบ้านใกล้ที่สุด "
มันจะถูกนำไปใช้งานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่องอีกด้วย
ไม่ขอพูดเยอะเดี่ยว ม.5 ก็จะได้รู้จัก KNN ในวิชาวิทยาการคำนวณ
.
👉 9) ทฤษฏีกราฟเบื้องต้น
อย่างทฤษฏีกราฟออยเลอร์ (Eulerian graph)
ที่ได้เรียนกันในชั้น ม.5 จะมีประโยชน์ในวิชาคอม
เช่น ตอนเรียนในวิชา network ของคอมพิเตอร์ เพื่อหาเส้นทางที่ดี่สุดในการส่งข้อมูล
หรือจะมองโครงสร้างข้อมูลเป็นแบบกราฟก็ได้ ก็ลองนึกถึงลิงค์ต่างในเว็บไซต์ สามารถจับโยงเป็นกราฟได้ด้วยนะ
.
👉 10) เอกซ์โพเนนเชียล และลอการิทึม
เราอาจไม่เห็นการประยุกต์ใช้ตรงๆ นะครับ
แต่ในการประเมินประสิทธิภาพของอัลกอริทึม เวลาเขียนโปรแกรม
เขาจะใช้ Big O ขอไม่อธิบายเยอะแล้วกันเนอะ
เรื่องนี้มีเขียนอยู่ตำราวิทยาการคำนวณชั้นม.4 (ไปหาอ่านเอาได้)
.
ซึ่งเทอม Big O บางครั้งก็อาจเห็นอยู่ในรูปเอกซ์โพเนนเซียล หรือลอการิทึมนั่นเอง
ถ้าไม่เข้าใจว่า เอกซ์โพเนนเซียล หรือลอการิทึม คืออะไร
ก็ไม่จะอธิบายได้ว่าประสิทธิภาพของอัลอริทึมเราดีหรือแย่
.
+++++++
เป็นไงยังครับ สนใจอยากรู้ว่า เลข ม.ปลาย
สามารถนำไปใช้ศึกษาต่ออะไรอีกบ้างไหมเนี่ย
ถ้าอยากรู้ ผมเลยขอแนะนำหนังสือ (ขายของหน่อย)
.
หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก"
เข้าใจได้ด้วยเลขม. ปลาย เล่ม 1 (เนื้อหาภาษาไทย)
ติดอันดับ Best seller ในหมวดหนังสือคอมพิวเตอร์ ของ MEB
.
เนื้อหาจะอธิบายปัญญาประดิษฐ์ (A) ในมุมมองเลขม.ปลาย
โดยปราศจากการโค้ดดิ้งให้มึนหัว
พร้อมภาพประกอบสีสันให้ดูอ่านง่าย
.
สนใจสั่งซ์้อได้ที่
👉 https://www.mebmarket.com/web/index.php…
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b…/chapter_example.pdf…
.
ขออภัยเล่มกระดาษตอนนี้ยังไม่มี โทดทีนะครัชชช
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai progammer
🤓 Many people may have complained that ′′ I have studied the number, why I haven't used it
This is just an example to know the number we studied in high school. The end.
Shouldn't leave if you think about studying computer at a high level.
.
👉 1) Linear equation
Starting from a straight line equation that looks like y=mx+c called standard photo.
- when m is steep
- c section is a y core cutting point
.
Linear equation, so we can study in level 4
Enough in the university. 5 Computational Science
You will see the benefits of a straight line equation. Used in data science (data science)
Linear regression data analysis
.
When we have data backwards in the past
Then can be taken to plot on the graph x with y
The result appears that the information has a straight line of relationships.
In case, we can find the most suitable straight line equation (optimize)
Presentation for future advance information
.
But in case the relationship of information finds it not a straight line.
We can also use equations that are not straight lines to predict information.
.
👉 2) Matrix
A group of numbers that are written in a square or square.
Apart from using to solve many variables.
It will be useful when you compilate photos. (Image processing)
Or computer vision work (computer vision)
.
This is what we have to say. The digital photos we see are beautiful.
But the computer doesn't see it as a human.
It's seen as a matrix. Inside the matrix is a number of colors.
And we can do math with pictures
For instance, subtract, multiply with digital photos in the matrix corner.
.
👉 3) Probability
For example, Bayes s' theorem theory
Theory of probability
Find out which hypothesis is most accurate using previous knowledge (Prior Knowledge)
.
This theory is applied to data analytics and machine learning.
For example, find the probability that green tea will be manufactured from Thailand's factory.
Consider the probability that patients have cancer when they recover from coronavirus infection.
Etc.
.
👉 4) Calculus
For example, being used in neural network
Which is also an artificial neural network that imitates brain cells.
But really in the network, it consists of weight
.
This weight is a random number that starts randomly.
Time will find the right weight (optimize)
It will be fined little by little
By principle of derivative or derivative.
.
👉 5) Logic
This subject is referring to ′′ plural ′′ meaning a sentence that gives value to True or False.
Includes using different types of plural connectors, whether it's ′′ and or when etc.
.
This aspect of computer system is fundamental.
Because basic computer circuits are only 0 or 1 numbers.
So it can be replaced with False or True in logic.
Not only that, the electronic circuit also has a logical action.
Whether it's ′′ and or no etc.
.
The more programming, the more I use.
Because we have to compare terms True or False
In controlling the program's working path
.
👉 6) function
Function is a relationship from one set called ' domain ' to another set called ' Range ' by unique member.
Which concepts function in mathematics
It was also applied to functional programming.
.
👉 7) Geometry analysis
Being applied to Computer, Graphics or Games
In view of people who use various drawing programs or animation programs.
We just click and drag. It's done. Right?
.
But I don't know that the program time will draw shapes like a rectangle, crop of various cones.
All in Geometry. Analyse the plot. Draw one at a time. Let us use it.
.
👉 8) Year Takorus
The famous triangle theory is applied to measure distance between spots.
It will be useful to digest data using algorithm.
K-Nearest Neighbors (KNN)
Thai name is ′′ nearest neighbourhood method
It will also be implemented, analyzed data, including machine learning.
I don't want to talk too much. Single. 5 I will know KNN in Calculation Theology.
.
👉 9) Preliminary Graph Theory
Theoretical Graph Oyler (Eulerian graph)
That we have studied in high school. 5 will be useful in computer class
For example, when studying in computer network subjects, find the best way to send information.
Or you can look at data structures as graphics. Think of different links on websites. You can be connected to a graph.
.
👉 10) m & LOGARIETY
We may not see the application frankly.
But in assessing performance of programming time algorithm.
He will use Big O. I don't want to explain too much.
This story is written in the textbook. Calculating in the university. 4 (Let's find it to read)
.
Big O semester may sometimes be seen in esponical or logarithm.
If you don't understand what Exponcial or Lokarithm is.
It doesn't explain how good or bad our alitum performance is.
.
+++++++
How are you? If you are interested, I want to know the number. The end.
What else can I apply to study?
If you want to know, I recommend the book (selling)
.
′′ Artificial Intelligence (AI) is not difficult ′′ book.
It can be understood by the number. End of book 1 (Thai language content)
Best seller ranked in MEB computer book category.
.
The contents will describe Artificial Intelligence (A) in view of the number. The end.
Without a code of dizzy
With colorful illustrations to see, easy to read.
.
If you are interested, you can order.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
Personal like the book. You can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry, paper book. I don't have it yet. Sorry.
.
✍ Written by Thai programmer thai progammerTranslated
theorem theory 在 โปรแกรมเมอร์ไทย Thai programmer Facebook 的最佳解答
🤓 หลายคนอาจเคยบ่น "เรียนเลขไปทำไม ไม่เห็นได้ใช้เลย"
อันนี้เป็นแค่ตัวอย่าง เพื่อให้รู้ว่าเลขที่เราเรียนตอนม.ปลาย
ไม่ควรทิ้งถ้าคิดจะเรียนคอมพิวเตอร์ ในระดับสูง
.
👉 1) สมการเชิงเส้น
เริ่มต้นจากสมการเส้นตรง ที่มีหน้าตาดังนี้ y=mx+c เรียกว่ารูปมาตรฐาน
- เมื่อ m เป็นความชัน
-ส่วน c เป็นจุดตัดแกน y
.
สมการเชิงเส้นเราจะได้เรียนในระดับ ม 4
พอในม.5 วิชา วิทยาการคำนวณ
ก็จะเห็นประโยชน์ของสมการเส้นตรงถูกนำไปใช้ในงาน data science (วิทยาการข้อมูล)
นำไปใช้วิเคราะห์ข้อมูลแบบ linear regression
.
กล่าวคือเมื่อเรามีข้อมูลย้อนหลังในอดีต
แล้วสามารถนำไปพล็อตลงบนกราฟแกน x กับ y
ผลปรากฏว่าข้อมูลมีความสัมพันธ์เป็นเส้นตรง
ในกรณีเราสามารถหาสมการเส้นตรงที่เหมาะสมสุด (optimize)
นำมาใช้พยากรณ์ข้อมูลล่วงหน้าในอนาคตได้
.
แต่ในกรณีที่ความสัมพันธ์ของข้อมูลพบว่าไม่ใช่เส้นตรง
เราสามารถใช้สมการที่ไม่ใช่เส้นตรง มาใช้พยากรณ์ข้อมูลก็ได้เช่นกัน
.
👉 2) เมทริกซ์
คือกลุ่มของจำนวนตัวเลข ที่เขียนเรียงกันเป็นรูปสี่เหลี่ยมผืนผ้าหรือจัตุรัส
นอกจากใช้แก้สมการหลายตัวแปรแล้ว
จะมีประโยชน์เวลานำไปประมวลภาพ (Image processing)
หรืองานพวกคอมพิวเตอร์วิชั่น (computer vision)
.
ต้องบอกอย่างนี้ว่า รูปภาพดิจิตอลที่เราเห็นเป็นสีสันสวยงาม
แต่ทว่าคอมไม่ได้มองเห็นเหมือนคน
มันมองเห็นเป็นเมทริกซ์ โดยข้างในเมทริกซ์ก็คือตัวเลขของค่าสี
และเราสามารถกระทำการคณิตศาสตร์กับรูปภาพได้
เช่น บวกลบ คูณหาร กับรูปภาพดิจิตอล ในมุมของเมทริกซ์
.
👉 3) ความน่าจะเป็น
ยกตัวอย่างเช่น ทฤษฏี Bayes' theorem
ทฤษฏีหนึงของความน่าจะเป็น
จะใช้หาว่าสมมติฐานใดน่าจะถูกต้องที่สุด โดยใช้ความรู้ก่อนหน้า (Prior Knowledge)
.
ทฤษีนี้ถูกนำไปใช้ในงานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่อง
เช่น จงหาความน่าจะเป็นที่ชาเขียวขวดนั้นจะผลิตจากโรงงานจากประเทศไทย
จงหาความน่าจะเป็นว่าผู้ป่วยจะเป็นโรคมะเร็ง เมื่อหายจากการติดเชื้อไวรัสโคโรนา
เป็นต้น
.
👉 4) แคลคูลัส
ตัวอย่างเช่น ถูกนำมาใช้ใน neural network
ซึ่งก็เครือข่ายประสาทเทียมที่เลียนแบบเซลล์สมอง
แต่จริงๆ ข้างในเครือข่ายจะประกอบไปด้วยน้ำหนัก
.
น้ำหนักที่ว่านี้มันก็คือตัวเลขจำนวนจริง ที่เริ่มต้นสุ่มขึ้นมา
แล้วเวลาจะหาค่าน้ำหนักที่เหมาะสม (optimize)
มันจะถูกปรับทีละเล็กทีละน้อย
โดยอาศัยหลักการเรื่องอนุพันธ์ หรือดิฟนั่นแหละ
.
👉 5) ตรรกศาสตร์
วิชานี้พูดถึง "ประพจน์" หมายถึงประโยคที่ให้ค่าออกมาเป็น True หรืด False
รวมถึงการใช้ตัวเชื่อมประพจน์แบบต่างๆ ไม่ว่าจะเป็น "และ" "หรือ" "ก็ต่อเมื่อ" เป็นต้น
.
ศาสตร์ด้านนี้เป็นพื้นฐานของระบบคอมพิวเตอร์
เพราะวงจรคอมพิวเตอร์พื้นฐาน มีแต่ตัวเลข 0 หรือ 1
จึงสามารถแทนด้วย False หรือ True ในทางตรรกศาสตร์
ไม่เพียงเท่านั้นวงจรอิเลคทรอนิกส์ ก็มีการดำเนินทางตรรกศาสตร์อีกด้วย
ไม่ว่าจะเป็น "และ" "หรือ" "ไม่" เป็นต้น
.
ยิ่งการเขียนโปรแกรม ยิ่งใช้เยอะ
เพราะต้องเปรียบเทียบเงื่อนไข True หรือ False
ในการควบคุมเส้นทางการทำงานของโปรแกรม
.
👉 6) ฟังก์ชัน
ฟังก์ชันคือความสัมพันธ์ จากเซตหนึ่งที่เรียกว่า 'โดเมน' ไปยังอีกเซตหนึ่งที่เรียกว่า 'เรนจ์' โดยที่สมาชิกตัวหน้าไม่ซ้ำกัน
ซึ่งคอนเซปต์ฟังก์ชันในทางคณิตศาสตร์
ก็ถูกนำไปใช้ในการเขียนโปรแกรมแบบ functional programming
.
👉 7) เรขาคณิตวิเคราะห์
ถูกนำไปใช้ในวิชาคอมกราฟิก หรือเกมส์
ในมุมมองของคนที่ใช้โปรแกรมวาดรูปต่างๆ หรือโปรแกรมสร้างแอนนิมเชั่นต่างๆ
เราก็แค่คลิกๆ ลากๆ ก็สร้างเสร็จแล้วใช่มั๊ยล่ะ
.
แต่หารู้หรือไม่ว่า เบื้องเวลาโปรแกรมจะวาดรูปทรง เช่น สี่เหลี่ยม วงรี ภาพตัดกรวยต่างๆ
ล้วนอาศัย เรขาคณิตวิเคราะห์ พล็อตวาดรูปทีละจุดออกมาให้เราใช้งาน
.
👉 8) ปีทาโกรัส
ทฤษฏีสามเหลี่ยมอันโด่งดังถูกนำไปใช้วัดระยะทางระหว่างจุดได้
ซึ่งจะมีประโยชน์ในการแยกแยะข้อมูล โดยใช้อัลกอริทึม
K-Nearest Neighbors (KNN)
ชื่อไทยก็คือ "ขั้นตอนวิธีการเพื่อนบ้านใกล้ที่สุด "
มันจะถูกนำไปใช้งานวิเคราะห์ข้อมูล รวมทั้งการเรียนรู้ของเครื่องอีกด้วย
ไม่ขอพูดเยอะเดี่ยว ม.5 ก็จะได้รู้จัก KNN ในวิชาวิทยาการคำนวณ
.
👉 9) ทฤษฏีกราฟเบื้องต้น
อย่างทฤษฏีกราฟออยเลอร์ (Eulerian graph)
ที่ได้เรียนกันในชั้น ม.5 จะมีประโยชน์ในวิชาคอม
เช่น ตอนเรียนในวิชา network ของคอมพิเตอร์ เพื่อหาเส้นทางที่ดี่สุดในการส่งข้อมูล
หรือจะมองโครงสร้างข้อมูลเป็นแบบกราฟก็ได้ ก็ลองนึกถึงลิงค์ต่างในเว็บไซต์ สามารถจับโยงเป็นกราฟได้ด้วยนะ
.
👉 10) เอกซ์โพเนนเชียล และลอการิทึม
เราอาจไม่เห็นการประยุกต์ใช้ตรงๆ นะครับ
แต่ในการประเมินประสิทธิภาพของอัลกอริทึม เวลาเขียนโปรแกรม
เขาจะใช้ Big O ขอไม่อธิบายเยอะแล้วกันเนอะ
เรื่องนี้มีเขียนอยู่ตำราวิทยาการคำนวณชั้นม.4 (ไปหาอ่านเอาได้)
.
ซึ่งเทอม Big O บางครั้งก็อาจเห็นอยู่ในรูปเอกซ์โพเนนเซียล หรือลอการิทึมนั่นเอง
ถ้าไม่เข้าใจว่า เอกซ์โพเนนเซียล หรือลอการิทึม คืออะไร
ก็ไม่จะอธิบายได้ว่าประสิทธิภาพของอัลอริทึมเราดีหรือแย่
.
+++++++
เป็นไงยังครับ สนใจอยากรู้ว่า เลข ม.ปลาย
สามารถนำไปใช้ศึกษาต่ออะไรอีกบ้างไหมเนี่ย
ถ้าอยากรู้ ผมเลยขอแนะนำหนังสือ (ขายของหน่อย)
.
หนังสือ "ปัญญาประดิษฐ์ (AI) ไม่ยาก"
เข้าใจได้ด้วยเลขม. ปลาย เล่ม 1 (เนื้อหาภาษาไทย)
ติดอันดับ Best seller ในหมวดหนังสือคอมพิวเตอร์ ของ MEB
.
เนื้อหาจะอธิบายปัญญาประดิษฐ์ (A) ในมุมมองเลขม.ปลาย
โดยปราศจากการโค้ดดิ้งให้มึนหัว
พร้อมภาพประกอบสีสันให้ดูอ่านง่าย
.
สนใจสั่งซ์้อได้ที่
👉 https://www.mebmarket.com/web/index.php…
.
ส่วนตัวอย่างหนังสือ ก็ดูได้ลิงค์นี้
👉 https://www.dropbox.com/s/fg8l38hc0k9b…/chapter_example.pdf…
.
ขออภัยเล่มกระดาษตอนนี้ยังไม่มี โทดทีนะครัชชช
.
✍เขียนโดย โปรแกรมเมอร์ไทย thai progammer
🤓 Many people may have complained about ′′ learning the number, why I didn't get to use it
This one is just an example to know the number we studied in high school. The end.
Don't leave if you want to learn computer at high level.
.
👉 1) Linear equation
Start from a straight line equation that looks like y=mx+c called standard photo
- When m is action
- c section is a cutting point y axis
.
Linear equation. We will learn in grade 4
Enough in the university. 5 Computational Science
It will see the benefits of straight line equation being applied to data science (data science) work.
Linear regression data analytics
.
i.e. when we have data back in the past
Then can be taken to plot on the x and y graph.
The result appears that the information is in a straight line.
In the case, we can find the most suitable straight line equation (optimize)
Advance future forecasts
.
But in case the relationship of information found out is not a straight line.
We can also use an equation that is not a straight line to propose information.
.
👉 2) Matrix
Is a group of numbers written in a square or square.
Besides using to solve several variables.
It will be useful when it's leading to the image (Image processing)
Or computer vision jobs (computer vision)
.
I have to say this. The digital photos we see are colorful.
But the computer is not visible as a person.
It's seen as a matrix inside. The matrix is the number of colors.
And we can do math with pictures
Like, plus, multiply, multiply with digital photos in the corner of the matrix.
.
👉 3) Probability
For example, Bayes ' theorem theory.
Theory of probability
I will use which hypothesis is most accurate using previous knowledge (Prior Knowledge)
.
This theory is implemented in data analysis including machine learning.
For example, find the probability that green tea will be manufactured from factories from Thailand.
Find out the probability that patients will have cancer when they recover from Coronavirus infection.
Etc.
.
👉 4) Calculus
For example, being used in neural network.
Which is also an artificial neural network that imitates brain cells.
But really, the network is composed of weight.
.
This weight is also a random number of real numbers.
Time to find the right weight (optimize)
It will be slightly fined.
By living the principle of derivative or divative.
.
👉 5) Logic
This subject speaks of ′′ pronouncement ′′ meaning True or False sentence.
Including using different plural connectors, whether it's ′′ and or or if etc.
.
This aspect of science is the basis of computer system.
Because the basic computer circuit is only 0 or 1 numbers.
So it can be replaced with False or True in logic.
Not only that, the electronic circuit also has logical action.
Whether it's ′′ and or or no etc.
.
The more the programming, the more you use.
Because we have to compare True or False conditions.
In control of the programming path
.
👉 6) function
A function is a relationship from one set called ' domain ' to another set called ' Range ' by a unique face member.
Which concept function in mathematics.
It's been applied to functional programming.
.
👉 7) Analytical Geometry
Being applied in a graphic or games class
In view of people using various drawing programs or Animation Builders.
I'm just a click and drag and it's done. Aren't we?
.
But do you know that in time, the program will draw shapes like a square, rectangular, cone collage.
All living in geometry, analyzing the plot, drawing one at a time. Let us use it.
.
👉 👉 8) Tacorus
The famous triangle theory is implemented to measure the distance between points.
Which would be useful to digest data using algorithms.
K-Nearest Neighbors (KNN)
Thai name is ′′ The closest neighborhood process
It will also be implemented for data analysis including machine learning.
I don't want to talk too much. 5 to know KNN in computational science.
.
👉 9) Preliminary Graph Theory
Theoretically, Graphite Oler (Eulerian Graph)
I have studied in the middle school class. 5 will come in handy in computer class
For example, in a computer network class to find the best way to send information.
Or look at the data structure as a graph. Think about the different links on the website. They can be linked as graphics.
.
👉 10) m AND LOGARIETYM
We may not see the application straight away.
But in assessing the performance of programming time algorithm.
He's going to use Big O. Let's not explain a lot.
This story is written in the textbook. Calculating class. 4 (go to read)
.
The Big O term may sometimes be seen in an ex-ponytail or a logic.
If you don't understand what is Exponity or Logarithum?
It doesn't explain whether our algorithm performance is good or bad.
.
+++++++
How is it? If interested, I want to know the number. The end.
Can I study anything else?
If you want to know, I recommend a book (selling stuff)
.
Book ′′ Artificial Intelligence (AI) is not difficult ′′
You can understand by the number of km. End of book 1 (Thai content)
Best seller in MEB computer book category
.
Content describes Artificial Intelligence (A) in the view of the number. The end.
Without a coding dizzy
With colorful illustrations to be seen. Easy to read.
.
If interested, order at.
👉 https://www.mebmarket.com/web/index.php?action=BookDetails&data=YToyOntzOjc6InVzZXJfaWQiO3M6NzoiMTcyNTQ4MyI7czo3OiJib29rX2lkIjtzOjY6IjEwODI0NiI7fQ&fbclid=IwAR11zxJea0OnJy5tbfIlSxo4UQmsemh_8TuBF0ddjJQzzliMFFoFz1AtTo4
.
As private as a book, you can see this link.
👉 https://www.dropbox.com/s/fg8l38hc0k9b0md/chapter_example.pdf?dl=0
.
Sorry for paper book. I haven't got it yet. I'm sorry.
.
✍ Written by Thai programmer thai progammerTranslated