2020高普考 在 🥊 張旭微積分期末考考衝班現場直播|2020.12.29 台中場|限定直播,播完即鎖付費觀看|數學老師張旭 的影片資訊
2020/12/29 六點半準時開始 內容以中興環工系微積分期末考考古題為主 12 月底 1 月初就考微積分期末考的同學也可以一起看 題目僅公布於張旭微積分考衝班社團 👉 https://www.f...
Search
2020/12/29 六點半準時開始 內容以中興環工系微積分期末考考古題為主 12 月底 1 月初就考微積分期末考的同學也可以一起看 題目僅公布於張旭微積分考衝班社團 👉 https://www.f...
【摘要】 此範例演示了老大比較法的進階題型,即便一開始的型式不為多項式分式,但通過整理以後仍然變成多項式分式的型式,那就可以使用老大比較法 【加入會員】 歡迎加入張旭老師頻道會員 付費訂閱支持張旭老...
【摘要】 本影片講解連續函數的一個重要定理:極值定理。這個定理除了需要連續函數以外,也需要這個連續函數定義在一個閉區間上,滿足這些要求以後,在這個閉區間上就可以找到兩個點,使得這兩個點代入函數以後剛好...
【摘要】 這是我很喜歡的一個定理,定點定理。雖然只是簡單版本,但居然可以觀察到這樣的現象,並且運用中間值定理就能證出來了,這就是數學奧妙的地方,常常會讓我有文章本天成,巧手偶得之的感覺 【加入會員】...
【摘要】 本範例利用中間值定理來證明勘根定理,不過這裡的勘根定理和台灣高中數學裡提到的勘根定理不太一樣,台灣高中數學裡面提到的勘根定理僅限於多項式函數,但其實勘根定理可以應用在任意連續函數上 【加入...
【摘要】 本影片主要說明連續函數在 [a,b] 區間上,若 f(a) 和 f(b) 不相等時,則對於 f(a) 和 f(b) 之間任意數 K 都可以在 a 和 b 之間找到一個 c 使得 f(c) =...
【摘要】 本影片介紹一個在求極限上常用的技巧,就是當合成函數的外層函數為連續函數時,那麼取極限這個動作就可以直接針對內層函數取就可以了,相當實用 【加入會員】 歡迎加入張旭老師頻道會員 付費訂閱支持...
【摘要】 這個範例是連續函數觀念的活用,之前的題目大多都是判斷一個確定的函數在某點是否連續,這題則是一個待定函數在要求為連續的情況下要利用連續的概念去決定之 【加入會員】 歡迎加入張旭老師頻道會員 ...
【摘要】 在了解連續函數的定義以後,接下來我們說明連續函數在四則運算與合成運算之下仍舊保持連續的特性,並透過許多例題強化連續函數的觀念 【加入會員】 歡迎加入張旭老師頻道會員 付費訂閱支持張旭老師,...
【摘要】 本範例舉了幾個進階的用來練習判斷函數在那些地方連續的例子,最重要的是當我們無法透過計算證明極限值等於函數值時,就要回歸極限的嚴格定義 【加入會員】 歡迎加入張旭老師頻道會員 付費訂閱支持張...